![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sprel | Structured version Visualization version GIF version |
Description: An element of the set of all unordered pairs over a given set 𝑉 is a pair of elements of the set 𝑉. (Contributed by AV, 22-Nov-2021.) |
Ref | Expression |
---|---|
sprel | ⊢ (𝑋 ∈ (Pairs‘𝑉) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑋 = {𝑎, 𝑏}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6958 | . 2 ⊢ (𝑋 ∈ (Pairs‘𝑉) → 𝑉 ∈ V) | |
2 | sprvalpw 47354 | . . . 4 ⊢ (𝑉 ∈ V → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | |
3 | 2 | eleq2d 2830 | . . 3 ⊢ (𝑉 ∈ V → (𝑋 ∈ (Pairs‘𝑉) ↔ 𝑋 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}})) |
4 | eqeq1 2744 | . . . . . 6 ⊢ (𝑝 = 𝑋 → (𝑝 = {𝑎, 𝑏} ↔ 𝑋 = {𝑎, 𝑏})) | |
5 | 4 | 2rexbidv 3228 | . . . . 5 ⊢ (𝑝 = 𝑋 → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑋 = {𝑎, 𝑏})) |
6 | 5 | elrab 3708 | . . . 4 ⊢ (𝑋 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ↔ (𝑋 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑋 = {𝑎, 𝑏})) |
7 | 6 | simprbi 496 | . . 3 ⊢ (𝑋 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑋 = {𝑎, 𝑏}) |
8 | 3, 7 | biimtrdi 253 | . 2 ⊢ (𝑉 ∈ V → (𝑋 ∈ (Pairs‘𝑉) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑋 = {𝑎, 𝑏})) |
9 | 1, 8 | mpcom 38 | 1 ⊢ (𝑋 ∈ (Pairs‘𝑉) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑋 = {𝑎, 𝑏}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {crab 3443 Vcvv 3488 𝒫 cpw 4622 {cpr 4650 ‘cfv 6573 Pairscspr 47351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-spr 47352 |
This theorem is referenced by: prssspr 47359 prsprel 47361 reupr 47396 |
Copyright terms: Public domain | W3C validator |