Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprel Structured version   Visualization version   GIF version

Theorem sprel 47358
Description: An element of the set of all unordered pairs over a given set 𝑉 is a pair of elements of the set 𝑉. (Contributed by AV, 22-Nov-2021.)
Assertion
Ref Expression
sprel (𝑋 ∈ (Pairs‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏})
Distinct variable groups:   𝑉,𝑎,𝑏   𝑋,𝑎,𝑏

Proof of Theorem sprel
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6958 . 2 (𝑋 ∈ (Pairs‘𝑉) → 𝑉 ∈ V)
2 sprvalpw 47354 . . . 4 (𝑉 ∈ V → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
32eleq2d 2830 . . 3 (𝑉 ∈ V → (𝑋 ∈ (Pairs‘𝑉) ↔ 𝑋 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}}))
4 eqeq1 2744 . . . . . 6 (𝑝 = 𝑋 → (𝑝 = {𝑎, 𝑏} ↔ 𝑋 = {𝑎, 𝑏}))
542rexbidv 3228 . . . . 5 (𝑝 = 𝑋 → (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏}))
65elrab 3708 . . . 4 (𝑋 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} ↔ (𝑋 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏}))
76simprbi 496 . . 3 (𝑋 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} → ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏})
83, 7biimtrdi 253 . 2 (𝑉 ∈ V → (𝑋 ∈ (Pairs‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏}))
91, 8mpcom 38 1 (𝑋 ∈ (Pairs‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  Vcvv 3488  𝒫 cpw 4622  {cpr 4650  cfv 6573  Pairscspr 47351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-spr 47352
This theorem is referenced by:  prssspr  47359  prsprel  47361  reupr  47396
  Copyright terms: Public domain W3C validator