Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprel Structured version   Visualization version   GIF version

Theorem sprel 46463
Description: An element of the set of all unordered pairs over a given set 𝑉 is a pair of elements of the set 𝑉. (Contributed by AV, 22-Nov-2021.)
Assertion
Ref Expression
sprel (𝑋 ∈ (Pairs‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏})
Distinct variable groups:   𝑉,𝑎,𝑏   𝑋,𝑎,𝑏

Proof of Theorem sprel
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6929 . 2 (𝑋 ∈ (Pairs‘𝑉) → 𝑉 ∈ V)
2 sprvalpw 46459 . . . 4 (𝑉 ∈ V → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
32eleq2d 2818 . . 3 (𝑉 ∈ V → (𝑋 ∈ (Pairs‘𝑉) ↔ 𝑋 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}}))
4 eqeq1 2735 . . . . . 6 (𝑝 = 𝑋 → (𝑝 = {𝑎, 𝑏} ↔ 𝑋 = {𝑎, 𝑏}))
542rexbidv 3218 . . . . 5 (𝑝 = 𝑋 → (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏}))
65elrab 3683 . . . 4 (𝑋 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} ↔ (𝑋 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏}))
76simprbi 496 . . 3 (𝑋 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} → ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏})
83, 7syl6bi 253 . 2 (𝑉 ∈ V → (𝑋 ∈ (Pairs‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏}))
91, 8mpcom 38 1 (𝑋 ∈ (Pairs‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wrex 3069  {crab 3431  Vcvv 3473  𝒫 cpw 4602  {cpr 4630  cfv 6543  Pairscspr 46456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-spr 46457
This theorem is referenced by:  prssspr  46464  prsprel  46466  reupr  46501
  Copyright terms: Public domain W3C validator