Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprel Structured version   Visualization version   GIF version

Theorem sprel 47608
Description: An element of the set of all unordered pairs over a given set 𝑉 is a pair of elements of the set 𝑉. (Contributed by AV, 22-Nov-2021.)
Assertion
Ref Expression
sprel (𝑋 ∈ (Pairs‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏})
Distinct variable groups:   𝑉,𝑎,𝑏   𝑋,𝑎,𝑏

Proof of Theorem sprel
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6863 . 2 (𝑋 ∈ (Pairs‘𝑉) → 𝑉 ∈ V)
2 sprvalpw 47604 . . . 4 (𝑉 ∈ V → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
32eleq2d 2819 . . 3 (𝑉 ∈ V → (𝑋 ∈ (Pairs‘𝑉) ↔ 𝑋 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}}))
4 eqeq1 2737 . . . . . 6 (𝑝 = 𝑋 → (𝑝 = {𝑎, 𝑏} ↔ 𝑋 = {𝑎, 𝑏}))
542rexbidv 3198 . . . . 5 (𝑝 = 𝑋 → (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏}))
65elrab 3643 . . . 4 (𝑋 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} ↔ (𝑋 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏}))
76simprbi 496 . . 3 (𝑋 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} → ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏})
83, 7biimtrdi 253 . 2 (𝑉 ∈ V → (𝑋 ∈ (Pairs‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏}))
91, 8mpcom 38 1 (𝑋 ∈ (Pairs‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑋 = {𝑎, 𝑏})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wrex 3057  {crab 3396  Vcvv 3437  𝒫 cpw 4549  {cpr 4577  cfv 6486  Pairscspr 47601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-spr 47602
This theorem is referenced by:  prssspr  47609  prsprel  47611  reupr  47646
  Copyright terms: Public domain W3C validator