Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprvalpw Structured version   Visualization version   GIF version

Theorem sprvalpw 43633
Description: The set of all unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
sprvalpw (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
Distinct variable groups:   𝑉,𝑎,𝑏,𝑝   𝑊,𝑎,𝑏,𝑝

Proof of Theorem sprvalpw
StepHypRef Expression
1 sprval 43632 . 2 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
2 prssi 4746 . . . . . . . 8 ((𝑎𝑉𝑏𝑉) → {𝑎, 𝑏} ⊆ 𝑉)
3 eleq1 2898 . . . . . . . . 9 (𝑝 = {𝑎, 𝑏} → (𝑝 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
4 prex 5323 . . . . . . . . . 10 {𝑎, 𝑏} ∈ V
54elpw 4544 . . . . . . . . 9 ({𝑎, 𝑏} ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ⊆ 𝑉)
63, 5syl6bb 289 . . . . . . . 8 (𝑝 = {𝑎, 𝑏} → (𝑝 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ⊆ 𝑉))
72, 6syl5ibrcom 249 . . . . . . 7 ((𝑎𝑉𝑏𝑉) → (𝑝 = {𝑎, 𝑏} → 𝑝 ∈ 𝒫 𝑉))
87rexlimivv 3290 . . . . . 6 (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} → 𝑝 ∈ 𝒫 𝑉)
98pm4.71ri 563 . . . . 5 (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
109a1i 11 . . . 4 (𝑉𝑊 → (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏})))
1110abbidv 2883 . . 3 (𝑉𝑊 → {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏})})
12 df-rab 3145 . . 3 {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏})}
1311, 12syl6eqr 2872 . 2 (𝑉𝑊 → {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
141, 13eqtrd 2854 1 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  {cab 2797  wrex 3137  {crab 3140  wss 3934  𝒫 cpw 4537  {cpr 4561  cfv 6348  Pairscspr 43630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-spr 43631
This theorem is referenced by:  sprvalpwn0  43636  sprel  43637  prelspr  43639
  Copyright terms: Public domain W3C validator