| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > konigsbergssiedgw | Structured version Visualization version GIF version | ||
| Description: Each subset of the indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.) |
| Ref | Expression |
|---|---|
| konigsberg.v | ⊢ 𝑉 = (0...3) |
| konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
| konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| konigsbergssiedgw | ⊢ ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = (𝐴 ++ 𝐵)) → 𝐴 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | konigsberg.v | . . 3 ⊢ 𝑉 = (0...3) | |
| 2 | konigsberg.e | . . 3 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
| 3 | konigsberg.g | . . 3 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 4 | 1, 2, 3 | konigsbergssiedgwpr 30185 | . 2 ⊢ ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = (𝐴 ++ 𝐵)) → 𝐴 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 5 | wrdf 14493 | . 2 ⊢ (𝐴 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐴:(0..^(♯‘𝐴))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | |
| 6 | prprrab 14448 | . . . . 5 ⊢ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
| 7 | 2re 12271 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 8 | 7 | eqlei2 11303 | . . . . . . 7 ⊢ ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2) |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) → ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2)) |
| 10 | 9 | ss2rabi 4048 | . . . . 5 ⊢ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
| 11 | 6, 10 | eqsstrri 4002 | . . . 4 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
| 12 | fss 6711 | . . . 4 ⊢ ((𝐴:(0..^(♯‘𝐴))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ∧ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → 𝐴:(0..^(♯‘𝐴))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
| 13 | 11, 12 | mpan2 691 | . . 3 ⊢ (𝐴:(0..^(♯‘𝐴))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐴:(0..^(♯‘𝐴))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 14 | iswrdb 14495 | . . 3 ⊢ (𝐴 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ 𝐴:(0..^(♯‘𝐴))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
| 15 | 13, 14 | sylibr 234 | . 2 ⊢ (𝐴:(0..^(♯‘𝐴))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐴 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 16 | 4, 5, 15 | 3syl 18 | 1 ⊢ ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = (𝐴 ++ 𝐵)) → 𝐴 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3411 Vcvv 3455 ∖ cdif 3919 ⊆ wss 3922 ∅c0 4304 𝒫 cpw 4571 {csn 4597 {cpr 4599 〈cop 4603 class class class wbr 5115 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 0cc0 11086 1c1 11087 ≤ cle 11227 2c2 12252 3c3 12253 ...cfz 13481 ..^cfzo 13628 ♯chash 14305 Word cword 14488 ++ cconcat 14545 〈“cs7 14822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-oadd 8447 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-dju 9872 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-n0 12459 df-xnn0 12532 df-z 12546 df-uz 12810 df-fz 13482 df-fzo 13629 df-hash 14306 df-word 14489 df-concat 14546 df-s1 14571 df-s2 14824 df-s3 14825 df-s4 14826 df-s5 14827 df-s6 14828 df-s7 14829 |
| This theorem is referenced by: konigsberglem1 30188 konigsberglem2 30189 konigsberglem3 30190 |
| Copyright terms: Public domain | W3C validator |