MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsbergssiedgw Structured version   Visualization version   GIF version

Theorem konigsbergssiedgw 30186
Description: Each subset of the indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsbergssiedgw ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = (𝐴 ++ 𝐵)) → 𝐴 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐸(𝑥)   𝐺(𝑥)

Proof of Theorem konigsbergssiedgw
StepHypRef Expression
1 konigsberg.v . . 3 𝑉 = (0...3)
2 konigsberg.e . . 3 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
3 konigsberg.g . . 3 𝐺 = ⟨𝑉, 𝐸
41, 2, 3konigsbergssiedgwpr 30185 . 2 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = (𝐴 ++ 𝐵)) → 𝐴 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
5 wrdf 14493 . 2 (𝐴 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐴:(0..^(♯‘𝐴))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
6 prprrab 14448 . . . . 5 {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
7 2re 12271 . . . . . . . 8 2 ∈ ℝ
87eqlei2 11303 . . . . . . 7 ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2)
98a1i 11 . . . . . 6 (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) → ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2))
109ss2rabi 4048 . . . . 5 {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
116, 10eqsstrri 4002 . . . 4 {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
12 fss 6711 . . . 4 ((𝐴:(0..^(♯‘𝐴))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ∧ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → 𝐴:(0..^(♯‘𝐴))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1311, 12mpan2 691 . . 3 (𝐴:(0..^(♯‘𝐴))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐴:(0..^(♯‘𝐴))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
14 iswrdb 14495 . . 3 (𝐴 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ 𝐴:(0..^(♯‘𝐴))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1513, 14sylibr 234 . 2 (𝐴:(0..^(♯‘𝐴))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐴 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
164, 5, 153syl 18 1 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = (𝐴 ++ 𝐵)) → 𝐴 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  {crab 3411  Vcvv 3455  cdif 3919  wss 3922  c0 4304  𝒫 cpw 4571  {csn 4597  {cpr 4599  cop 4603   class class class wbr 5115  wf 6515  cfv 6519  (class class class)co 7394  0cc0 11086  1c1 11087  cle 11227  2c2 12252  3c3 12253  ...cfz 13481  ..^cfzo 13628  chash 14305  Word cword 14488   ++ cconcat 14545  ⟨“cs7 14822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-oadd 8447  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-dju 9872  df-card 9910  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-3 12261  df-n0 12459  df-xnn0 12532  df-z 12546  df-uz 12810  df-fz 13482  df-fzo 13629  df-hash 14306  df-word 14489  df-concat 14546  df-s1 14571  df-s2 14824  df-s3 14825  df-s4 14826  df-s5 14827  df-s6 14828  df-s7 14829
This theorem is referenced by:  konigsberglem1  30188  konigsberglem2  30189  konigsberglem3  30190
  Copyright terms: Public domain W3C validator