![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > konigsbergssiedgw | Structured version Visualization version GIF version |
Description: Each subset of the indexed edges of the KΓΆnigsberg graph πΊ is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.) |
Ref | Expression |
---|---|
konigsberg.v | β’ π = (0...3) |
konigsberg.e | β’ πΈ = β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ© |
konigsberg.g | β’ πΊ = β¨π, πΈβ© |
Ref | Expression |
---|---|
konigsbergssiedgw | β’ ((π΄ β Word V β§ π΅ β Word V β§ πΈ = (π΄ ++ π΅)) β π΄ β Word {π₯ β (π« π β {β }) β£ (β―βπ₯) β€ 2}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | konigsberg.v | . . 3 β’ π = (0...3) | |
2 | konigsberg.e | . . 3 β’ πΈ = β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ© | |
3 | konigsberg.g | . . 3 β’ πΊ = β¨π, πΈβ© | |
4 | 1, 2, 3 | konigsbergssiedgwpr 30115 | . 2 β’ ((π΄ β Word V β§ π΅ β Word V β§ πΈ = (π΄ ++ π΅)) β π΄ β Word {π₯ β π« π β£ (β―βπ₯) = 2}) |
5 | wrdf 14501 | . 2 β’ (π΄ β Word {π₯ β π« π β£ (β―βπ₯) = 2} β π΄:(0..^(β―βπ΄))βΆ{π₯ β π« π β£ (β―βπ₯) = 2}) | |
6 | prprrab 14466 | . . . . 5 β’ {π₯ β (π« π β {β }) β£ (β―βπ₯) = 2} = {π₯ β π« π β£ (β―βπ₯) = 2} | |
7 | 2re 12316 | . . . . . . . 8 β’ 2 β β | |
8 | 7 | eqlei2 11355 | . . . . . . 7 β’ ((β―βπ₯) = 2 β (β―βπ₯) β€ 2) |
9 | 8 | a1i 11 | . . . . . 6 β’ (π₯ β (π« π β {β }) β ((β―βπ₯) = 2 β (β―βπ₯) β€ 2)) |
10 | 9 | ss2rabi 4071 | . . . . 5 β’ {π₯ β (π« π β {β }) β£ (β―βπ₯) = 2} β {π₯ β (π« π β {β }) β£ (β―βπ₯) β€ 2} |
11 | 6, 10 | eqsstrri 4013 | . . . 4 β’ {π₯ β π« π β£ (β―βπ₯) = 2} β {π₯ β (π« π β {β }) β£ (β―βπ₯) β€ 2} |
12 | fss 6737 | . . . 4 β’ ((π΄:(0..^(β―βπ΄))βΆ{π₯ β π« π β£ (β―βπ₯) = 2} β§ {π₯ β π« π β£ (β―βπ₯) = 2} β {π₯ β (π« π β {β }) β£ (β―βπ₯) β€ 2}) β π΄:(0..^(β―βπ΄))βΆ{π₯ β (π« π β {β }) β£ (β―βπ₯) β€ 2}) | |
13 | 11, 12 | mpan2 689 | . . 3 β’ (π΄:(0..^(β―βπ΄))βΆ{π₯ β π« π β£ (β―βπ₯) = 2} β π΄:(0..^(β―βπ΄))βΆ{π₯ β (π« π β {β }) β£ (β―βπ₯) β€ 2}) |
14 | iswrdb 14502 | . . 3 β’ (π΄ β Word {π₯ β (π« π β {β }) β£ (β―βπ₯) β€ 2} β π΄:(0..^(β―βπ΄))βΆ{π₯ β (π« π β {β }) β£ (β―βπ₯) β€ 2}) | |
15 | 13, 14 | sylibr 233 | . 2 β’ (π΄:(0..^(β―βπ΄))βΆ{π₯ β π« π β£ (β―βπ₯) = 2} β π΄ β Word {π₯ β (π« π β {β }) β£ (β―βπ₯) β€ 2}) |
16 | 4, 5, 15 | 3syl 18 | 1 β’ ((π΄ β Word V β§ π΅ β Word V β§ πΈ = (π΄ ++ π΅)) β π΄ β Word {π₯ β (π« π β {β }) β£ (β―βπ₯) β€ 2}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 {crab 3419 Vcvv 3463 β cdif 3942 β wss 3945 β c0 4323 π« cpw 4603 {csn 4629 {cpr 4631 β¨cop 4635 class class class wbr 5148 βΆwf 6543 βcfv 6547 (class class class)co 7417 0cc0 11138 1c1 11139 β€ cle 11279 2c2 12297 3c3 12298 ...cfz 13516 ..^cfzo 13659 β―chash 14321 Word cword 14496 ++ cconcat 14552 β¨βcs7 14829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-dju 9924 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 df-hash 14322 df-word 14497 df-concat 14553 df-s1 14578 df-s2 14831 df-s3 14832 df-s4 14833 df-s5 14834 df-s6 14835 df-s7 14836 |
This theorem is referenced by: konigsberglem1 30118 konigsberglem2 30119 konigsberglem3 30120 |
Copyright terms: Public domain | W3C validator |