![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknclwwlkdifnum | Structured version Visualization version GIF version |
Description: In a 𝐾-regular graph, the size of the set 𝐴 of walks of length 𝑁 starting with a fixed vertex 𝑋 and ending not at this vertex is the difference between 𝐾 to the power of 𝑁 and the size of the set 𝐵 of closed walks of length 𝑁 anchored at this vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.) (Revised by AV, 8-Mar-2022.) (Proof shortened by AV, 16-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknclwwlkdif.a | ⊢ 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} |
clwwlknclwwlkdif.b | ⊢ 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋) |
clwwlknclwwlkdifnum.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
clwwlknclwwlkdifnum | ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘𝐴) = ((𝐾↑𝑁) − (♯‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknclwwlkdif.a | . . . . 5 ⊢ 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} | |
2 | clwwlknclwwlkdif.b | . . . . 5 ⊢ 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋) | |
3 | eqid 2735 | . . . . 5 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} | |
4 | 1, 2, 3 | clwwlknclwwlkdif 30008 | . . . 4 ⊢ 𝐴 = ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵) |
5 | 4 | fveq2i 6910 | . . 3 ⊢ (♯‘𝐴) = (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) |
6 | 5 | a1i 11 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘𝐴) = (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵))) |
7 | clwwlknclwwlkdifnum.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | 7 | eleq1i 2830 | . . . . . . 7 ⊢ (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin) |
9 | 8 | biimpi 216 | . . . . . 6 ⊢ (𝑉 ∈ Fin → (Vtx‘𝐺) ∈ Fin) |
10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → (Vtx‘𝐺) ∈ Fin) |
11 | 10 | adantr 480 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (Vtx‘𝐺) ∈ Fin) |
12 | wwlksnfi 29936 | . . . 4 ⊢ ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin) | |
13 | rabfi 9301 | . . . 4 ⊢ ((𝑁 WWalksN 𝐺) ∈ Fin → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin) | |
14 | 11, 12, 13 | 3syl 18 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin) |
15 | 7 | iswwlksnon 29883 | . . . . . . . 8 ⊢ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)} |
16 | ancom 460 | . . . . . . . . 9 ⊢ (((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋) ↔ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)) | |
17 | 16 | rabbii 3439 | . . . . . . . 8 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)} |
18 | 15, 17 | eqtri 2763 | . . . . . . 7 ⊢ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)} |
19 | 18 | a1i 11 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)}) |
20 | 2, 19 | eqtrid 2787 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝐵 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)}) |
21 | simpr 484 | . . . . . . 7 ⊢ (((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋) | |
22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋)) |
23 | 22 | ss2rabi 4087 | . . . . 5 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)} ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} |
24 | 20, 23 | eqsstrdi 4050 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
25 | 24 | adantl 481 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
26 | hashssdif 14448 | . . 3 ⊢ (({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin ∧ 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) → (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵))) | |
27 | 14, 25, 26 | syl2anc 584 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵))) |
28 | simpl 482 | . . . . 5 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 RegUSGraph 𝐾) | |
29 | 28 | adantr 480 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝐺 RegUSGraph 𝐾) |
30 | simpr 484 | . . . . 5 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝑉 ∈ Fin) | |
31 | 30 | adantr 480 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑉 ∈ Fin) |
32 | simpl 482 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑋 ∈ 𝑉) | |
33 | 32 | adantl 481 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑋 ∈ 𝑉) |
34 | simpr 484 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
35 | 34 | adantl 481 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0) |
36 | 7 | rusgrnumwwlkg 30006 | . . . 4 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) = (𝐾↑𝑁)) |
37 | 29, 31, 33, 35, 36 | syl13anc 1371 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) = (𝐾↑𝑁)) |
38 | 37 | oveq1d 7446 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵)) = ((𝐾↑𝑁) − (♯‘𝐵))) |
39 | 6, 27, 38 | 3eqtrd 2779 | 1 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘𝐴) = ((𝐾↑𝑁) − (♯‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 {crab 3433 ∖ cdif 3960 ⊆ wss 3963 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 0cc0 11153 − cmin 11490 ℕ0cn0 12524 ↑cexp 14099 ♯chash 14366 lastSclsw 14597 Vtxcvtx 29028 RegUSGraph crusgr 29589 WWalksN cwwlksn 29856 WWalksNOn cwwlksnon 29857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-rp 13033 df-xadd 13153 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-word 14550 df-lsw 14598 df-concat 14606 df-s1 14631 df-substr 14676 df-pfx 14706 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-vtx 29030 df-iedg 29031 df-edg 29080 df-uhgr 29090 df-ushgr 29091 df-upgr 29114 df-umgr 29115 df-uspgr 29182 df-usgr 29183 df-fusgr 29349 df-nbgr 29365 df-vtxdg 29499 df-rgr 29590 df-rusgr 29591 df-wwlks 29860 df-wwlksn 29861 df-wwlksnon 29862 |
This theorem is referenced by: numclwwlkqhash 30404 |
Copyright terms: Public domain | W3C validator |