![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknclwwlkdifnum | Structured version Visualization version GIF version |
Description: In a 𝐾-regular graph, the size of the set 𝐴 of walks of length 𝑁 starting with a fixed vertex 𝑋 and ending not at this vertex is the difference between 𝐾 to the power of 𝑁 and the size of the set 𝐵 of closed walks of length 𝑁 anchored at this vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.) (Revised by AV, 8-Mar-2022.) (Proof shortened by AV, 16-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknclwwlkdif.a | ⊢ 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} |
clwwlknclwwlkdif.b | ⊢ 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋) |
clwwlknclwwlkdifnum.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
clwwlknclwwlkdifnum | ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘𝐴) = ((𝐾↑𝑁) − (♯‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknclwwlkdif.a | . . . . 5 ⊢ 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} | |
2 | clwwlknclwwlkdif.b | . . . . 5 ⊢ 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋) | |
3 | eqid 2731 | . . . . 5 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} | |
4 | 1, 2, 3 | clwwlknclwwlkdif 29665 | . . . 4 ⊢ 𝐴 = ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵) |
5 | 4 | fveq2i 6894 | . . 3 ⊢ (♯‘𝐴) = (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) |
6 | 5 | a1i 11 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘𝐴) = (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵))) |
7 | clwwlknclwwlkdifnum.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | 7 | eleq1i 2823 | . . . . . . 7 ⊢ (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin) |
9 | 8 | biimpi 215 | . . . . . 6 ⊢ (𝑉 ∈ Fin → (Vtx‘𝐺) ∈ Fin) |
10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → (Vtx‘𝐺) ∈ Fin) |
11 | 10 | adantr 480 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (Vtx‘𝐺) ∈ Fin) |
12 | wwlksnfi 29593 | . . . 4 ⊢ ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin) | |
13 | rabfi 9275 | . . . 4 ⊢ ((𝑁 WWalksN 𝐺) ∈ Fin → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin) | |
14 | 11, 12, 13 | 3syl 18 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin) |
15 | 7 | iswwlksnon 29540 | . . . . . . . 8 ⊢ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)} |
16 | ancom 460 | . . . . . . . . 9 ⊢ (((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋) ↔ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)) | |
17 | 16 | rabbii 3437 | . . . . . . . 8 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)} |
18 | 15, 17 | eqtri 2759 | . . . . . . 7 ⊢ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)} |
19 | 18 | a1i 11 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)}) |
20 | 2, 19 | eqtrid 2783 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝐵 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)}) |
21 | simpr 484 | . . . . . . 7 ⊢ (((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋) | |
22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋)) |
23 | 22 | ss2rabi 4074 | . . . . 5 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)} ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} |
24 | 20, 23 | eqsstrdi 4036 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
25 | 24 | adantl 481 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
26 | hashssdif 14379 | . . 3 ⊢ (({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin ∧ 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) → (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵))) | |
27 | 14, 25, 26 | syl2anc 583 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵))) |
28 | simpl 482 | . . . . 5 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 RegUSGraph 𝐾) | |
29 | 28 | adantr 480 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝐺 RegUSGraph 𝐾) |
30 | simpr 484 | . . . . 5 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝑉 ∈ Fin) | |
31 | 30 | adantr 480 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑉 ∈ Fin) |
32 | simpl 482 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑋 ∈ 𝑉) | |
33 | 32 | adantl 481 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑋 ∈ 𝑉) |
34 | simpr 484 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
35 | 34 | adantl 481 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0) |
36 | 7 | rusgrnumwwlkg 29663 | . . . 4 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) = (𝐾↑𝑁)) |
37 | 29, 31, 33, 35, 36 | syl13anc 1371 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) = (𝐾↑𝑁)) |
38 | 37 | oveq1d 7427 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵)) = ((𝐾↑𝑁) − (♯‘𝐵))) |
39 | 6, 27, 38 | 3eqtrd 2775 | 1 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘𝐴) = ((𝐾↑𝑁) − (♯‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 {crab 3431 ∖ cdif 3945 ⊆ wss 3948 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 Fincfn 8945 0cc0 11116 − cmin 11451 ℕ0cn0 12479 ↑cexp 14034 ♯chash 14297 lastSclsw 14519 Vtxcvtx 28689 RegUSGraph crusgr 29246 WWalksN cwwlksn 29513 WWalksNOn cwwlksnon 29514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-oadd 8476 df-er 8709 df-map 8828 df-pm 8829 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-oi 9511 df-dju 9902 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-xnn0 12552 df-z 12566 df-uz 12830 df-rp 12982 df-xadd 13100 df-fz 13492 df-fzo 13635 df-seq 13974 df-exp 14035 df-hash 14298 df-word 14472 df-lsw 14520 df-concat 14528 df-s1 14553 df-substr 14598 df-pfx 14628 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-sum 15640 df-vtx 28691 df-iedg 28692 df-edg 28741 df-uhgr 28751 df-ushgr 28752 df-upgr 28775 df-umgr 28776 df-uspgr 28843 df-usgr 28844 df-fusgr 29007 df-nbgr 29023 df-vtxdg 29156 df-rgr 29247 df-rusgr 29248 df-wwlks 29517 df-wwlksn 29518 df-wwlksnon 29519 |
This theorem is referenced by: numclwwlkqhash 30061 |
Copyright terms: Public domain | W3C validator |