MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknclwwlkdifnum Structured version   Visualization version   GIF version

Theorem clwwlknclwwlkdifnum 29233
Description: In a 𝐾-regular graph, the size of the set 𝐴 of walks of length 𝑁 starting with a fixed vertex 𝑋 and ending not at this vertex is the difference between 𝐾 to the power of 𝑁 and the size of the set 𝐡 of closed walks of length 𝑁 anchored at this vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.) (Revised by AV, 8-Mar-2022.) (Proof shortened by AV, 16-Mar-2022.)
Hypotheses
Ref Expression
clwwlknclwwlkdif.a 𝐴 = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)}
clwwlknclwwlkdif.b 𝐡 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)
clwwlknclwwlkdifnum.v 𝑉 = (Vtxβ€˜πΊ)
Assertion
Ref Expression
clwwlknclwwlkdifnum (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜π΄) = ((𝐾↑𝑁) βˆ’ (β™―β€˜π΅)))
Distinct variable groups:   𝑀,𝐺   𝑀,𝑁   𝑀,𝑋   𝑀,𝐾   𝑀,𝑉
Allowed substitution hints:   𝐴(𝑀)   𝐡(𝑀)

Proof of Theorem clwwlknclwwlkdifnum
StepHypRef Expression
1 clwwlknclwwlkdif.a . . . . 5 𝐴 = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)}
2 clwwlknclwwlkdif.b . . . . 5 𝐡 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)
3 eqid 2733 . . . . 5 {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}
41, 2, 3clwwlknclwwlkdif 29232 . . . 4 𝐴 = ({𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} βˆ– 𝐡)
54fveq2i 6895 . . 3 (β™―β€˜π΄) = (β™―β€˜({𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} βˆ– 𝐡))
65a1i 11 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜π΄) = (β™―β€˜({𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} βˆ– 𝐡)))
7 clwwlknclwwlkdifnum.v . . . . . . . 8 𝑉 = (Vtxβ€˜πΊ)
87eleq1i 2825 . . . . . . 7 (𝑉 ∈ Fin ↔ (Vtxβ€˜πΊ) ∈ Fin)
98biimpi 215 . . . . . 6 (𝑉 ∈ Fin β†’ (Vtxβ€˜πΊ) ∈ Fin)
109adantl 483 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) β†’ (Vtxβ€˜πΊ) ∈ Fin)
1110adantr 482 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (Vtxβ€˜πΊ) ∈ Fin)
12 wwlksnfi 29160 . . . 4 ((Vtxβ€˜πΊ) ∈ Fin β†’ (𝑁 WWalksN 𝐺) ∈ Fin)
13 rabfi 9269 . . . 4 ((𝑁 WWalksN 𝐺) ∈ Fin β†’ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ∈ Fin)
1411, 12, 133syl 18 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ∈ Fin)
157iswwlksnon 29107 . . . . . . . 8 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜π‘) = 𝑋)}
16 ancom 462 . . . . . . . . 9 (((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜π‘) = 𝑋) ↔ ((π‘€β€˜π‘) = 𝑋 ∧ (π‘€β€˜0) = 𝑋))
1716rabbii 3439 . . . . . . . 8 {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜π‘) = 𝑋)} = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜π‘) = 𝑋 ∧ (π‘€β€˜0) = 𝑋)}
1815, 17eqtri 2761 . . . . . . 7 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜π‘) = 𝑋 ∧ (π‘€β€˜0) = 𝑋)}
1918a1i 11 . . . . . 6 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜π‘) = 𝑋 ∧ (π‘€β€˜0) = 𝑋)})
202, 19eqtrid 2785 . . . . 5 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ 𝐡 = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜π‘) = 𝑋 ∧ (π‘€β€˜0) = 𝑋)})
21 simpr 486 . . . . . . 7 (((π‘€β€˜π‘) = 𝑋 ∧ (π‘€β€˜0) = 𝑋) β†’ (π‘€β€˜0) = 𝑋)
2221a1i 11 . . . . . 6 (𝑀 ∈ (𝑁 WWalksN 𝐺) β†’ (((π‘€β€˜π‘) = 𝑋 ∧ (π‘€β€˜0) = 𝑋) β†’ (π‘€β€˜0) = 𝑋))
2322ss2rabi 4075 . . . . 5 {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜π‘) = 𝑋 ∧ (π‘€β€˜0) = 𝑋)} βŠ† {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}
2420, 23eqsstrdi 4037 . . . 4 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ 𝐡 βŠ† {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
2524adantl 483 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝐡 βŠ† {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
26 hashssdif 14372 . . 3 (({𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ∈ Fin ∧ 𝐡 βŠ† {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}) β†’ (β™―β€˜({𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} βˆ– 𝐡)) = ((β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}) βˆ’ (β™―β€˜π΅)))
2714, 25, 26syl2anc 585 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜({𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} βˆ– 𝐡)) = ((β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}) βˆ’ (β™―β€˜π΅)))
28 simpl 484 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) β†’ 𝐺 RegUSGraph 𝐾)
2928adantr 482 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝐺 RegUSGraph 𝐾)
30 simpr 486 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) β†’ 𝑉 ∈ Fin)
3130adantr 482 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝑉 ∈ Fin)
32 simpl 484 . . . . 5 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ 𝑋 ∈ 𝑉)
3332adantl 483 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝑋 ∈ 𝑉)
34 simpr 486 . . . . 5 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ 𝑁 ∈ β„•0)
3534adantl 483 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝑁 ∈ β„•0)
367rusgrnumwwlkg 29230 . . . 4 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}) = (𝐾↑𝑁))
3729, 31, 33, 35, 36syl13anc 1373 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}) = (𝐾↑𝑁))
3837oveq1d 7424 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ ((β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}) βˆ’ (β™―β€˜π΅)) = ((𝐾↑𝑁) βˆ’ (β™―β€˜π΅)))
396, 27, 383eqtrd 2777 1 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜π΄) = ((𝐾↑𝑁) βˆ’ (β™―β€˜π΅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  {crab 3433   βˆ– cdif 3946   βŠ† wss 3949   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7409  Fincfn 8939  0cc0 11110   βˆ’ cmin 11444  β„•0cn0 12472  β†‘cexp 14027  β™―chash 14290  lastSclsw 14512  Vtxcvtx 28256   RegUSGraph crusgr 28813   WWalksN cwwlksn 29080   WWalksNOn cwwlksnon 29081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-oi 9505  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-xnn0 12545  df-z 12559  df-uz 12823  df-rp 12975  df-xadd 13093  df-fz 13485  df-fzo 13628  df-seq 13967  df-exp 14028  df-hash 14291  df-word 14465  df-lsw 14513  df-concat 14521  df-s1 14546  df-substr 14591  df-pfx 14621  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-sum 15633  df-vtx 28258  df-iedg 28259  df-edg 28308  df-uhgr 28318  df-ushgr 28319  df-upgr 28342  df-umgr 28343  df-uspgr 28410  df-usgr 28411  df-fusgr 28574  df-nbgr 28590  df-vtxdg 28723  df-rgr 28814  df-rusgr 28815  df-wwlks 29084  df-wwlksn 29085  df-wwlksnon 29086
This theorem is referenced by:  numclwwlkqhash  29628
  Copyright terms: Public domain W3C validator