MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknclwwlkdifnum Structured version   Visualization version   GIF version

Theorem clwwlknclwwlkdifnum 29846
Description: In a 𝐾-regular graph, the size of the set 𝐴 of walks of length 𝑁 starting with a fixed vertex 𝑋 and ending not at this vertex is the difference between 𝐾 to the power of 𝑁 and the size of the set 𝐡 of closed walks of length 𝑁 anchored at this vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.) (Revised by AV, 8-Mar-2022.) (Proof shortened by AV, 16-Mar-2022.)
Hypotheses
Ref Expression
clwwlknclwwlkdif.a 𝐴 = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)}
clwwlknclwwlkdif.b 𝐡 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)
clwwlknclwwlkdifnum.v 𝑉 = (Vtxβ€˜πΊ)
Assertion
Ref Expression
clwwlknclwwlkdifnum (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜π΄) = ((𝐾↑𝑁) βˆ’ (β™―β€˜π΅)))
Distinct variable groups:   𝑀,𝐺   𝑀,𝑁   𝑀,𝑋   𝑀,𝐾   𝑀,𝑉
Allowed substitution hints:   𝐴(𝑀)   𝐡(𝑀)

Proof of Theorem clwwlknclwwlkdifnum
StepHypRef Expression
1 clwwlknclwwlkdif.a . . . . 5 𝐴 = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (lastSβ€˜π‘€) β‰  𝑋)}
2 clwwlknclwwlkdif.b . . . . 5 𝐡 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)
3 eqid 2725 . . . . 5 {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}
41, 2, 3clwwlknclwwlkdif 29845 . . . 4 𝐴 = ({𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} βˆ– 𝐡)
54fveq2i 6897 . . 3 (β™―β€˜π΄) = (β™―β€˜({𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} βˆ– 𝐡))
65a1i 11 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜π΄) = (β™―β€˜({𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} βˆ– 𝐡)))
7 clwwlknclwwlkdifnum.v . . . . . . . 8 𝑉 = (Vtxβ€˜πΊ)
87eleq1i 2816 . . . . . . 7 (𝑉 ∈ Fin ↔ (Vtxβ€˜πΊ) ∈ Fin)
98biimpi 215 . . . . . 6 (𝑉 ∈ Fin β†’ (Vtxβ€˜πΊ) ∈ Fin)
109adantl 480 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) β†’ (Vtxβ€˜πΊ) ∈ Fin)
1110adantr 479 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (Vtxβ€˜πΊ) ∈ Fin)
12 wwlksnfi 29773 . . . 4 ((Vtxβ€˜πΊ) ∈ Fin β†’ (𝑁 WWalksN 𝐺) ∈ Fin)
13 rabfi 9292 . . . 4 ((𝑁 WWalksN 𝐺) ∈ Fin β†’ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ∈ Fin)
1411, 12, 133syl 18 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ∈ Fin)
157iswwlksnon 29720 . . . . . . . 8 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜π‘) = 𝑋)}
16 ancom 459 . . . . . . . . 9 (((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜π‘) = 𝑋) ↔ ((π‘€β€˜π‘) = 𝑋 ∧ (π‘€β€˜0) = 𝑋))
1716rabbii 3425 . . . . . . . 8 {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜0) = 𝑋 ∧ (π‘€β€˜π‘) = 𝑋)} = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜π‘) = 𝑋 ∧ (π‘€β€˜0) = 𝑋)}
1815, 17eqtri 2753 . . . . . . 7 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜π‘) = 𝑋 ∧ (π‘€β€˜0) = 𝑋)}
1918a1i 11 . . . . . 6 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜π‘) = 𝑋 ∧ (π‘€β€˜0) = 𝑋)})
202, 19eqtrid 2777 . . . . 5 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ 𝐡 = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜π‘) = 𝑋 ∧ (π‘€β€˜0) = 𝑋)})
21 simpr 483 . . . . . . 7 (((π‘€β€˜π‘) = 𝑋 ∧ (π‘€β€˜0) = 𝑋) β†’ (π‘€β€˜0) = 𝑋)
2221a1i 11 . . . . . 6 (𝑀 ∈ (𝑁 WWalksN 𝐺) β†’ (((π‘€β€˜π‘) = 𝑋 ∧ (π‘€β€˜0) = 𝑋) β†’ (π‘€β€˜0) = 𝑋))
2322ss2rabi 4071 . . . . 5 {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((π‘€β€˜π‘) = 𝑋 ∧ (π‘€β€˜0) = 𝑋)} βŠ† {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}
2420, 23eqsstrdi 4032 . . . 4 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ 𝐡 βŠ† {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
2524adantl 480 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝐡 βŠ† {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
26 hashssdif 14403 . . 3 (({𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ∈ Fin ∧ 𝐡 βŠ† {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}) β†’ (β™―β€˜({𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} βˆ– 𝐡)) = ((β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}) βˆ’ (β™―β€˜π΅)))
2714, 25, 26syl2anc 582 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜({𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} βˆ– 𝐡)) = ((β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}) βˆ’ (β™―β€˜π΅)))
28 simpl 481 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) β†’ 𝐺 RegUSGraph 𝐾)
2928adantr 479 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝐺 RegUSGraph 𝐾)
30 simpr 483 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) β†’ 𝑉 ∈ Fin)
3130adantr 479 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝑉 ∈ Fin)
32 simpl 481 . . . . 5 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ 𝑋 ∈ 𝑉)
3332adantl 480 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝑋 ∈ 𝑉)
34 simpr 483 . . . . 5 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ 𝑁 ∈ β„•0)
3534adantl 480 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝑁 ∈ β„•0)
367rusgrnumwwlkg 29843 . . . 4 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}) = (𝐾↑𝑁))
3729, 31, 33, 35, 36syl13anc 1369 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}) = (𝐾↑𝑁))
3837oveq1d 7432 . 2 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ ((β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}) βˆ’ (β™―β€˜π΅)) = ((𝐾↑𝑁) βˆ’ (β™―β€˜π΅)))
396, 27, 383eqtrd 2769 1 (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜π΄) = ((𝐾↑𝑁) βˆ’ (β™―β€˜π΅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  {crab 3419   βˆ– cdif 3942   βŠ† wss 3945   class class class wbr 5148  β€˜cfv 6547  (class class class)co 7417  Fincfn 8962  0cc0 11138   βˆ’ cmin 11474  β„•0cn0 12502  β†‘cexp 14058  β™―chash 14321  lastSclsw 14544  Vtxcvtx 28865   RegUSGraph crusgr 29426   WWalksN cwwlksn 29693   WWalksNOn cwwlksnon 29694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8723  df-map 8845  df-pm 8846  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-sup 9465  df-oi 9533  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13007  df-xadd 13125  df-fz 13517  df-fzo 13660  df-seq 13999  df-exp 14059  df-hash 14322  df-word 14497  df-lsw 14545  df-concat 14553  df-s1 14578  df-substr 14623  df-pfx 14653  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-clim 15464  df-sum 15665  df-vtx 28867  df-iedg 28868  df-edg 28917  df-uhgr 28927  df-ushgr 28928  df-upgr 28951  df-umgr 28952  df-uspgr 29019  df-usgr 29020  df-fusgr 29186  df-nbgr 29202  df-vtxdg 29336  df-rgr 29427  df-rusgr 29428  df-wwlks 29697  df-wwlksn 29698  df-wwlksnon 29699
This theorem is referenced by:  numclwwlkqhash  30241
  Copyright terms: Public domain W3C validator