MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknclwwlkdifnum Structured version   Visualization version   GIF version

Theorem clwwlknclwwlkdifnum 29962
Description: In a 𝐾-regular graph, the size of the set 𝐴 of walks of length 𝑁 starting with a fixed vertex 𝑋 and ending not at this vertex is the difference between 𝐾 to the power of 𝑁 and the size of the set 𝐵 of closed walks of length 𝑁 anchored at this vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.) (Revised by AV, 8-Mar-2022.) (Proof shortened by AV, 16-Mar-2022.)
Hypotheses
Ref Expression
clwwlknclwwlkdif.a 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}
clwwlknclwwlkdif.b 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)
clwwlknclwwlkdifnum.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clwwlknclwwlkdifnum (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘𝐴) = ((𝐾𝑁) − (♯‘𝐵)))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑋   𝑤,𝐾   𝑤,𝑉
Allowed substitution hints:   𝐴(𝑤)   𝐵(𝑤)

Proof of Theorem clwwlknclwwlkdifnum
StepHypRef Expression
1 clwwlknclwwlkdif.a . . . . 5 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}
2 clwwlknclwwlkdif.b . . . . 5 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)
3 eqid 2733 . . . . 5 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
41, 2, 3clwwlknclwwlkdif 29961 . . . 4 𝐴 = ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)
54fveq2i 6831 . . 3 (♯‘𝐴) = (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵))
65a1i 11 . 2 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘𝐴) = (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)))
7 clwwlknclwwlkdifnum.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
87eleq1i 2824 . . . . . . 7 (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin)
98biimpi 216 . . . . . 6 (𝑉 ∈ Fin → (Vtx‘𝐺) ∈ Fin)
109adantl 481 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → (Vtx‘𝐺) ∈ Fin)
1110adantr 480 . . . 4 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (Vtx‘𝐺) ∈ Fin)
12 wwlksnfi 29886 . . . 4 ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin)
13 rabfi 9162 . . . 4 ((𝑁 WWalksN 𝐺) ∈ Fin → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin)
1411, 12, 133syl 18 . . 3 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin)
157iswwlksnon 29833 . . . . . . . 8 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)}
16 ancom 460 . . . . . . . . 9 (((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋) ↔ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋))
1716rabbii 3401 . . . . . . . 8 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)}
1815, 17eqtri 2756 . . . . . . 7 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)}
1918a1i 11 . . . . . 6 ((𝑋𝑉𝑁 ∈ ℕ0) → (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)})
202, 19eqtrid 2780 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ0) → 𝐵 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)})
21 simpr 484 . . . . . . 7 (((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋)
2221a1i 11 . . . . . 6 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋))
2322ss2rabi 4025 . . . . 5 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)} ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
2420, 23eqsstrdi 3975 . . . 4 ((𝑋𝑉𝑁 ∈ ℕ0) → 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
2524adantl 481 . . 3 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
26 hashssdif 14321 . . 3 (({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin ∧ 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) → (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵)))
2714, 25, 26syl2anc 584 . 2 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵)))
28 simpl 482 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 RegUSGraph 𝐾)
2928adantr 480 . . . 4 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → 𝐺 RegUSGraph 𝐾)
30 simpr 484 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝑉 ∈ Fin)
3130adantr 480 . . . 4 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → 𝑉 ∈ Fin)
32 simpl 482 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ0) → 𝑋𝑉)
3332adantl 481 . . . 4 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → 𝑋𝑉)
34 simpr 484 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3534adantl 481 . . . 4 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
367rusgrnumwwlkg 29959 . . . 4 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) = (𝐾𝑁))
3729, 31, 33, 35, 36syl13anc 1374 . . 3 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) = (𝐾𝑁))
3837oveq1d 7367 . 2 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵)) = ((𝐾𝑁) − (♯‘𝐵)))
396, 27, 383eqtrd 2772 1 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘𝐴) = ((𝐾𝑁) − (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  {crab 3396  cdif 3895  wss 3898   class class class wbr 5093  cfv 6486  (class class class)co 7352  Fincfn 8875  0cc0 11013  cmin 11351  0cn0 12388  cexp 13970  chash 14239  lastSclsw 14471  Vtxcvtx 28976   RegUSGraph crusgr 29537   WWalksN cwwlksn 29806   WWalksNOn cwwlksnon 29807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-oi 9403  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-rp 12893  df-xadd 13014  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-word 14423  df-lsw 14472  df-concat 14480  df-s1 14506  df-substr 14551  df-pfx 14581  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596  df-vtx 28978  df-iedg 28979  df-edg 29028  df-uhgr 29038  df-ushgr 29039  df-upgr 29062  df-umgr 29063  df-uspgr 29130  df-usgr 29131  df-fusgr 29297  df-nbgr 29313  df-vtxdg 29447  df-rgr 29538  df-rusgr 29539  df-wwlks 29810  df-wwlksn 29811  df-wwlksnon 29812
This theorem is referenced by:  numclwwlkqhash  30357
  Copyright terms: Public domain W3C validator