MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknclwwlkdifnum Structured version   Visualization version   GIF version

Theorem clwwlknclwwlkdifnum 27444
Description: In a 𝐾-regular graph, the size of the set 𝐴 of walks of length 𝑁 starting with a fixed vertex 𝑋 and ending not at this vertex is the difference between 𝐾 to the power of 𝑁 and the size of the set 𝐵 of closed walks of length 𝑁 anchored at this vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.) (Revised by AV, 8-Mar-2022.) (Proof shortened by AV, 16-Mar-2022.)
Hypotheses
Ref Expression
clwwlknclwwlkdif.a 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}
clwwlknclwwlkdif.b 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)
clwwlknclwwlkdifnum.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clwwlknclwwlkdifnum (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘𝐴) = ((𝐾𝑁) − (♯‘𝐵)))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑋   𝑤,𝐾   𝑤,𝑉
Allowed substitution hints:   𝐴(𝑤)   𝐵(𝑤)

Proof of Theorem clwwlknclwwlkdifnum
StepHypRef Expression
1 clwwlknclwwlkdif.a . . . . 5 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}
2 clwwlknclwwlkdif.b . . . . 5 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)
3 eqid 2797 . . . . 5 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
41, 2, 3clwwlknclwwlkdif 27443 . . . 4 𝐴 = ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)
54fveq2i 6548 . . 3 (♯‘𝐴) = (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵))
65a1i 11 . 2 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘𝐴) = (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)))
7 clwwlknclwwlkdifnum.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
87eleq1i 2875 . . . . . . 7 (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin)
98biimpi 217 . . . . . 6 (𝑉 ∈ Fin → (Vtx‘𝐺) ∈ Fin)
109adantl 482 . . . . 5 ((𝐺RegUSGraph𝐾𝑉 ∈ Fin) → (Vtx‘𝐺) ∈ Fin)
1110adantr 481 . . . 4 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (Vtx‘𝐺) ∈ Fin)
12 wwlksnfi 27370 . . . 4 ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin)
13 rabfi 8596 . . . 4 ((𝑁 WWalksN 𝐺) ∈ Fin → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin)
1411, 12, 133syl 18 . . 3 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin)
157iswwlksnon 27317 . . . . . . . 8 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)}
16 ancom 461 . . . . . . . . 9 (((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋) ↔ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋))
1716rabbii 3421 . . . . . . . 8 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)}
1815, 17eqtri 2821 . . . . . . 7 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)}
1918a1i 11 . . . . . 6 ((𝑋𝑉𝑁 ∈ ℕ0) → (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)})
202, 19syl5eq 2845 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ0) → 𝐵 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)})
21 simpr 485 . . . . . . 7 (((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋)
2221a1i 11 . . . . . 6 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋))
2322ss2rabi 3980 . . . . 5 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)} ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
2420, 23syl6eqss 3948 . . . 4 ((𝑋𝑉𝑁 ∈ ℕ0) → 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
2524adantl 482 . . 3 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
26 hashssdif 13625 . . 3 (({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin ∧ 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) → (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵)))
2714, 25, 26syl2anc 584 . 2 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵)))
28 simpl 483 . . . . 5 ((𝐺RegUSGraph𝐾𝑉 ∈ Fin) → 𝐺RegUSGraph𝐾)
2928adantr 481 . . . 4 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → 𝐺RegUSGraph𝐾)
30 simpr 485 . . . . 5 ((𝐺RegUSGraph𝐾𝑉 ∈ Fin) → 𝑉 ∈ Fin)
3130adantr 481 . . . 4 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → 𝑉 ∈ Fin)
32 simpl 483 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ0) → 𝑋𝑉)
3332adantl 482 . . . 4 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → 𝑋𝑉)
34 simpr 485 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3534adantl 482 . . . 4 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
367rusgrnumwwlkg 27441 . . . 4 ((𝐺RegUSGraph𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) = (𝐾𝑁))
3729, 31, 33, 35, 36syl13anc 1365 . . 3 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) = (𝐾𝑁))
3837oveq1d 7038 . 2 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵)) = ((𝐾𝑁) − (♯‘𝐵)))
396, 27, 383eqtrd 2837 1 (((𝐺RegUSGraph𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘𝐴) = ((𝐾𝑁) − (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1525  wcel 2083  wne 2986  {crab 3111  cdif 3862  wss 3865   class class class wbr 4968  cfv 6232  (class class class)co 7023  Fincfn 8364  0cc0 10390  cmin 10723  0cn0 11751  cexp 13283  chash 13544  lastSclsw 13764  Vtxcvtx 26468  RegUSGraphcrusgr 27025   WWalksN cwwlksn 27290   WWalksNOn cwwlksnon 27291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-disj 4937  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-2o 7961  df-oadd 7964  df-er 8146  df-map 8265  df-pm 8266  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-sup 8759  df-oi 8827  df-dju 9183  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-n0 11752  df-xnn0 11822  df-z 11836  df-uz 12098  df-rp 12244  df-xadd 12362  df-fz 12747  df-fzo 12888  df-seq 13224  df-exp 13284  df-hash 13545  df-word 13712  df-lsw 13765  df-concat 13773  df-s1 13798  df-substr 13843  df-pfx 13873  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-clim 14683  df-sum 14881  df-vtx 26470  df-iedg 26471  df-edg 26520  df-uhgr 26530  df-ushgr 26531  df-upgr 26554  df-umgr 26555  df-uspgr 26622  df-usgr 26623  df-fusgr 26786  df-nbgr 26802  df-vtxdg 26935  df-rgr 27026  df-rusgr 27027  df-wwlks 27294  df-wwlksn 27295  df-wwlksnon 27296
This theorem is referenced by:  numclwwlkqhash  27842
  Copyright terms: Public domain W3C validator