| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlknclwwlkdifnum | Structured version Visualization version GIF version | ||
| Description: In a 𝐾-regular graph, the size of the set 𝐴 of walks of length 𝑁 starting with a fixed vertex 𝑋 and ending not at this vertex is the difference between 𝐾 to the power of 𝑁 and the size of the set 𝐵 of closed walks of length 𝑁 anchored at this vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.) (Revised by AV, 8-Mar-2022.) (Proof shortened by AV, 16-Mar-2022.) |
| Ref | Expression |
|---|---|
| clwwlknclwwlkdif.a | ⊢ 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} |
| clwwlknclwwlkdif.b | ⊢ 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋) |
| clwwlknclwwlkdifnum.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| clwwlknclwwlkdifnum | ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘𝐴) = ((𝐾↑𝑁) − (♯‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlknclwwlkdif.a | . . . . 5 ⊢ 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} | |
| 2 | clwwlknclwwlkdif.b | . . . . 5 ⊢ 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋) | |
| 3 | eqid 2731 | . . . . 5 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} | |
| 4 | 1, 2, 3 | clwwlknclwwlkdif 29954 | . . . 4 ⊢ 𝐴 = ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵) |
| 5 | 4 | fveq2i 6825 | . . 3 ⊢ (♯‘𝐴) = (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) |
| 6 | 5 | a1i 11 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘𝐴) = (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵))) |
| 7 | clwwlknclwwlkdifnum.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 8 | 7 | eleq1i 2822 | . . . . . . 7 ⊢ (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin) |
| 9 | 8 | biimpi 216 | . . . . . 6 ⊢ (𝑉 ∈ Fin → (Vtx‘𝐺) ∈ Fin) |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → (Vtx‘𝐺) ∈ Fin) |
| 11 | 10 | adantr 480 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (Vtx‘𝐺) ∈ Fin) |
| 12 | wwlksnfi 29882 | . . . 4 ⊢ ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin) | |
| 13 | rabfi 9155 | . . . 4 ⊢ ((𝑁 WWalksN 𝐺) ∈ Fin → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin) | |
| 14 | 11, 12, 13 | 3syl 18 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin) |
| 15 | 7 | iswwlksnon 29829 | . . . . . . . 8 ⊢ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)} |
| 16 | ancom 460 | . . . . . . . . 9 ⊢ (((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋) ↔ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)) | |
| 17 | 16 | rabbii 3400 | . . . . . . . 8 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)} |
| 18 | 15, 17 | eqtri 2754 | . . . . . . 7 ⊢ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)} |
| 19 | 18 | a1i 11 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)}) |
| 20 | 2, 19 | eqtrid 2778 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝐵 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)}) |
| 21 | simpr 484 | . . . . . . 7 ⊢ (((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋) | |
| 22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋) → (𝑤‘0) = 𝑋)) |
| 23 | 22 | ss2rabi 4027 | . . . . 5 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘𝑁) = 𝑋 ∧ (𝑤‘0) = 𝑋)} ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} |
| 24 | 20, 23 | eqsstrdi 3979 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
| 25 | 24 | adantl 481 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |
| 26 | hashssdif 14316 | . . 3 ⊢ (({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin ∧ 𝐵 ⊆ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) → (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵))) | |
| 27 | 14, 25, 26 | syl2anc 584 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ 𝐵)) = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵))) |
| 28 | simpl 482 | . . . . 5 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 RegUSGraph 𝐾) | |
| 29 | 28 | adantr 480 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝐺 RegUSGraph 𝐾) |
| 30 | simpr 484 | . . . . 5 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝑉 ∈ Fin) | |
| 31 | 30 | adantr 480 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑉 ∈ Fin) |
| 32 | simpl 482 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑋 ∈ 𝑉) | |
| 33 | 32 | adantl 481 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑋 ∈ 𝑉) |
| 34 | simpr 484 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
| 35 | 34 | adantl 481 | . . . 4 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0) |
| 36 | 7 | rusgrnumwwlkg 29952 | . . . 4 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) = (𝐾↑𝑁)) |
| 37 | 29, 31, 33, 35, 36 | syl13anc 1374 | . . 3 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) = (𝐾↑𝑁)) |
| 38 | 37 | oveq1d 7361 | . 2 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) − (♯‘𝐵)) = ((𝐾↑𝑁) − (♯‘𝐵))) |
| 39 | 6, 27, 38 | 3eqtrd 2770 | 1 ⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘𝐴) = ((𝐾↑𝑁) − (♯‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ∖ cdif 3899 ⊆ wss 3902 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 0cc0 11003 − cmin 11341 ℕ0cn0 12378 ↑cexp 13965 ♯chash 14234 lastSclsw 14466 Vtxcvtx 28972 RegUSGraph crusgr 29533 WWalksN cwwlksn 29802 WWalksNOn cwwlksnon 29803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-disj 5059 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-dju 9791 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-xnn0 12452 df-z 12466 df-uz 12730 df-rp 12888 df-xadd 13009 df-fz 13405 df-fzo 13552 df-seq 13906 df-exp 13966 df-hash 14235 df-word 14418 df-lsw 14467 df-concat 14475 df-s1 14501 df-substr 14546 df-pfx 14576 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-sum 15591 df-vtx 28974 df-iedg 28975 df-edg 29024 df-uhgr 29034 df-ushgr 29035 df-upgr 29058 df-umgr 29059 df-uspgr 29126 df-usgr 29127 df-fusgr 29293 df-nbgr 29309 df-vtxdg 29443 df-rgr 29534 df-rusgr 29535 df-wwlks 29806 df-wwlksn 29807 df-wwlksnon 29808 |
| This theorem is referenced by: numclwwlkqhash 30350 |
| Copyright terms: Public domain | W3C validator |