![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrs2 | Structured version Visualization version GIF version |
Description: The set of functionals with closed kernels and majorizing the orthocomplement of a given subspace 𝑄 is a subspace of the dual space containing functionals with closed kernels. Note that 𝑅 is the value given by mapdval 38209. (Contributed by NM, 12-Mar-2015.) |
Ref | Expression |
---|---|
lclkrs2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkrs2.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkrs2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkrs2.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
lclkrs2.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrs2.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrs2.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrs2.t | ⊢ 𝑇 = (LSubSp‘𝐷) |
lclkrs2.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
lclkrs2.r | ⊢ 𝑅 = {𝑔 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑔))) = (𝐿‘𝑔) ∧ ( ⊥ ‘(𝐿‘𝑔)) ⊆ 𝑄)} |
lclkrs2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lclkrs2.q | ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
Ref | Expression |
---|---|
lclkrs2 | ⊢ (𝜑 → (𝑅 ∈ 𝑇 ∧ 𝑅 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrs2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lclkrs2.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lclkrs2.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | lclkrs2.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑈) | |
5 | lclkrs2.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
6 | lclkrs2.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
7 | lclkrs2.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
8 | lclkrs2.t | . . 3 ⊢ 𝑇 = (LSubSp‘𝐷) | |
9 | lclkrs2.r | . . 3 ⊢ 𝑅 = {𝑔 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑔))) = (𝐿‘𝑔) ∧ ( ⊥ ‘(𝐿‘𝑔)) ⊆ 𝑄)} | |
10 | lclkrs2.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | lclkrs2.q | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝑆) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | lclkrs 38120 | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝑇) |
13 | simpl 475 | . . . . 5 ⊢ ((( ⊥ ‘( ⊥ ‘(𝐿‘𝑔))) = (𝐿‘𝑔) ∧ ( ⊥ ‘(𝐿‘𝑔)) ⊆ 𝑄) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝑔))) = (𝐿‘𝑔)) | |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝑔 ∈ 𝐹 → ((( ⊥ ‘( ⊥ ‘(𝐿‘𝑔))) = (𝐿‘𝑔) ∧ ( ⊥ ‘(𝐿‘𝑔)) ⊆ 𝑄) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝑔))) = (𝐿‘𝑔))) |
15 | 14 | ss2rabi 3937 | . . 3 ⊢ {𝑔 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑔))) = (𝐿‘𝑔) ∧ ( ⊥ ‘(𝐿‘𝑔)) ⊆ 𝑄)} ⊆ {𝑔 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑔))) = (𝐿‘𝑔)} |
16 | lclkrs2.c | . . . 4 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
17 | fveq2 6493 | . . . . . . . 8 ⊢ (𝑓 = 𝑔 → (𝐿‘𝑓) = (𝐿‘𝑔)) | |
18 | 17 | fveq2d 6497 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → ( ⊥ ‘(𝐿‘𝑓)) = ( ⊥ ‘(𝐿‘𝑔))) |
19 | 18 | fveq2d 6497 | . . . . . 6 ⊢ (𝑓 = 𝑔 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = ( ⊥ ‘( ⊥ ‘(𝐿‘𝑔)))) |
20 | 19, 17 | eqeq12d 2787 | . . . . 5 ⊢ (𝑓 = 𝑔 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑔))) = (𝐿‘𝑔))) |
21 | 20 | cbvrabv 3406 | . . . 4 ⊢ {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} = {𝑔 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑔))) = (𝐿‘𝑔)} |
22 | 16, 21 | eqtri 2796 | . . 3 ⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑔))) = (𝐿‘𝑔)} |
23 | 15, 9, 22 | 3sstr4i 3894 | . 2 ⊢ 𝑅 ⊆ 𝐶 |
24 | 12, 23 | jctir 513 | 1 ⊢ (𝜑 → (𝑅 ∈ 𝑇 ∧ 𝑅 ⊆ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 {crab 3086 ⊆ wss 3823 ‘cfv 6182 LSubSpclss 19419 LFnlclfn 35638 LKerclk 35666 LDualcld 35704 HLchlt 35931 LHypclh 36565 DVecHcdvh 37659 ocHcoch 37928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 ax-riotaBAD 35534 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-iin 4789 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-of 7221 df-om 7391 df-1st 7495 df-2nd 7496 df-tpos 7689 df-undef 7736 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-1o 7899 df-oadd 7903 df-er 8083 df-map 8202 df-en 8301 df-dom 8302 df-sdom 8303 df-fin 8304 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-nn 11434 df-2 11497 df-3 11498 df-4 11499 df-5 11500 df-6 11501 df-n0 11702 df-z 11788 df-uz 12053 df-fz 12703 df-struct 16335 df-ndx 16336 df-slot 16337 df-base 16339 df-sets 16340 df-ress 16341 df-plusg 16428 df-mulr 16429 df-sca 16431 df-vsca 16432 df-0g 16565 df-mre 16709 df-mrc 16710 df-acs 16712 df-proset 17390 df-poset 17408 df-plt 17420 df-lub 17436 df-glb 17437 df-join 17438 df-meet 17439 df-p0 17501 df-p1 17502 df-lat 17508 df-clat 17570 df-mgm 17704 df-sgrp 17746 df-mnd 17757 df-submnd 17798 df-grp 17888 df-minusg 17889 df-sbg 17890 df-subg 18054 df-cntz 18212 df-oppg 18239 df-lsm 18516 df-cmn 18662 df-abl 18663 df-mgp 18957 df-ur 18969 df-ring 19016 df-oppr 19090 df-dvdsr 19108 df-unit 19109 df-invr 19139 df-dvr 19150 df-drng 19221 df-lmod 19352 df-lss 19420 df-lsp 19460 df-lvec 19591 df-lsatoms 35557 df-lshyp 35558 df-lcv 35600 df-lfl 35639 df-lkr 35667 df-ldual 35705 df-oposet 35757 df-ol 35759 df-oml 35760 df-covers 35847 df-ats 35848 df-atl 35879 df-cvlat 35903 df-hlat 35932 df-llines 36079 df-lplanes 36080 df-lvols 36081 df-lines 36082 df-psubsp 36084 df-pmap 36085 df-padd 36377 df-lhyp 36569 df-laut 36570 df-ldil 36685 df-ltrn 36686 df-trl 36740 df-tgrp 37324 df-tendo 37336 df-edring 37338 df-dveca 37584 df-disoa 37610 df-dvech 37660 df-dib 37720 df-dic 37754 df-dih 37810 df-doch 37929 df-djh 37976 |
This theorem is referenced by: mapd1o 38229 |
Copyright terms: Public domain | W3C validator |