| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgruspgr | Structured version Visualization version GIF version | ||
| Description: A simple graph is a simple pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 15-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgruspgr | ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 1, 2 | isusgr 29098 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
| 4 | 2re 12202 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 5 | 4 | eqlei2 11227 | . . . . . . 7 ⊢ ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2) |
| 6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2)) |
| 7 | 6 | ss2rabi 4028 | . . . . 5 ⊢ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
| 8 | f1ss 6725 | . . . . 5 ⊢ (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
| 9 | 7, 8 | mpan2 691 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 10 | 3, 9 | biimtrdi 253 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ USGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 11 | 1, 2 | isuspgr 29097 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 12 | 10, 11 | sylibrd 259 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)) |
| 13 | 12 | pm2.43i 52 | 1 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3394 ∖ cdif 3900 ⊆ wss 3903 ∅c0 4284 𝒫 cpw 4551 {csn 4577 class class class wbr 5092 dom cdm 5619 –1-1→wf1 6479 ‘cfv 6482 ≤ cle 11150 2c2 12183 ♯chash 14237 Vtxcvtx 28941 iEdgciedg 28942 USPGraphcuspgr 29093 USGraphcusgr 29094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-i2m1 11077 ax-1ne0 11078 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-2 12191 df-uspgr 29095 df-usgr 29096 |
| This theorem is referenced by: usgrumgruspgr 29127 usgruspgrb 29128 usgrupgr 29130 usgrislfuspgr 29132 usgredg2vtxeu 29166 usgredgedg 29175 usgredgleord 29178 vtxdusgrfvedg 29437 usgrn2cycl 29754 wlksnfi 29852 rusgrnumwwlk 29920 rusgrnumwlkg 29922 clwlksndivn 30030 clwlknon2num 30312 numclwlk1lem2 30314 isubgr3stgr 47959 usgrexmpl12ngrlic 48023 gpg5ngric 48112 |
| Copyright terms: Public domain | W3C validator |