![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgruspgr | Structured version Visualization version GIF version |
Description: A simple graph is a simple pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 15-Oct-2020.) |
Ref | Expression |
---|---|
usgruspgr | ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2725 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | isusgr 29010 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
4 | 2re 12316 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
5 | 4 | eqlei2 11355 | . . . . . . 7 ⊢ ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2) |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2)) |
7 | 6 | ss2rabi 4066 | . . . . 5 ⊢ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
8 | f1ss 6794 | . . . . 5 ⊢ (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
9 | 7, 8 | mpan2 689 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
10 | 3, 9 | biimtrdi 252 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ USGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
11 | 1, 2 | isuspgr 29009 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
12 | 10, 11 | sylibrd 258 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)) |
13 | 12 | pm2.43i 52 | 1 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {crab 3419 ∖ cdif 3936 ⊆ wss 3939 ∅c0 4318 𝒫 cpw 4598 {csn 4624 class class class wbr 5143 dom cdm 5672 –1-1→wf1 6540 ‘cfv 6543 ≤ cle 11279 2c2 12297 ♯chash 14321 Vtxcvtx 28853 iEdgciedg 28854 USPGraphcuspgr 29005 USGraphcusgr 29006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-i2m1 11206 ax-1ne0 11207 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-2 12305 df-uspgr 29007 df-usgr 29008 |
This theorem is referenced by: usgrumgruspgr 29039 usgruspgrb 29040 usgrupgr 29042 usgrislfuspgr 29044 usgredg2vtxeu 29078 usgredgedg 29087 usgredgleord 29090 vtxdusgrfvedg 29349 usgrn2cycl 29664 wlksnfi 29762 rusgrnumwwlk 29830 rusgrnumwlkg 29832 clwlksndivn 29940 clwlknon2num 30222 numclwlk1lem2 30224 |
Copyright terms: Public domain | W3C validator |