| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgrupgr | Structured version Visualization version GIF version | ||
| Description: An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| umgrupgr | ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2736 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 1, 2 | isumgr 29079 | . . . 4 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ UMGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
| 4 | id 22 | . . . . 5 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) | |
| 5 | 2re 12319 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
| 6 | 5 | leidi 11776 | . . . . . . . . . 10 ⊢ 2 ≤ 2 |
| 7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ ((♯‘𝑥) = 2 → 2 ≤ 2) |
| 8 | breq1 5127 | . . . . . . . . 9 ⊢ ((♯‘𝑥) = 2 → ((♯‘𝑥) ≤ 2 ↔ 2 ≤ 2)) | |
| 9 | 7, 8 | mpbird 257 | . . . . . . . 8 ⊢ ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2) |
| 10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2)) |
| 11 | 10 | ss2rabi 4057 | . . . . . 6 ⊢ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 13 | 4, 12 | fssd 6728 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 14 | 3, 13 | biimtrdi 253 | . . 3 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ UMGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 15 | 14 | pm2.43i 52 | . 2 ⊢ (𝐺 ∈ UMGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 16 | 1, 2 | isupgr 29068 | . 2 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 17 | 15, 16 | mpbird 257 | 1 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3420 ∖ cdif 3928 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 {csn 4606 class class class wbr 5124 dom cdm 5659 ⟶wf 6532 ‘cfv 6536 ≤ cle 11275 2c2 12300 ♯chash 14353 Vtxcvtx 28980 iEdgciedg 28981 UPGraphcupgr 29064 UMGraphcumgr 29065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-i2m1 11202 ax-1ne0 11203 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-2 12308 df-upgr 29066 df-umgr 29067 |
| This theorem is referenced by: umgruhgr 29088 upgr0e 29095 umgrislfupgr 29107 nbumgrvtx 29330 umgrwlknloop 29634 umgrwwlks2on 29944 umgr3v3e3cycl 30170 konigsberg 30243 |
| Copyright terms: Public domain | W3C validator |