| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgrupgr | Structured version Visualization version GIF version | ||
| Description: An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| umgrupgr | ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 1, 2 | isumgr 29058 | . . . 4 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ UMGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
| 4 | id 22 | . . . . 5 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) | |
| 5 | 2re 12220 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
| 6 | 5 | leidi 11672 | . . . . . . . . . 10 ⊢ 2 ≤ 2 |
| 7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ ((♯‘𝑥) = 2 → 2 ≤ 2) |
| 8 | breq1 5098 | . . . . . . . . 9 ⊢ ((♯‘𝑥) = 2 → ((♯‘𝑥) ≤ 2 ↔ 2 ≤ 2)) | |
| 9 | 7, 8 | mpbird 257 | . . . . . . . 8 ⊢ ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2) |
| 10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2)) |
| 11 | 10 | ss2rabi 4030 | . . . . . 6 ⊢ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 13 | 4, 12 | fssd 6673 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 14 | 3, 13 | biimtrdi 253 | . . 3 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ UMGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 15 | 14 | pm2.43i 52 | . 2 ⊢ (𝐺 ∈ UMGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 16 | 1, 2 | isupgr 29047 | . 2 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 17 | 15, 16 | mpbird 257 | 1 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3396 ∖ cdif 3902 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 {csn 4579 class class class wbr 5095 dom cdm 5623 ⟶wf 6482 ‘cfv 6486 ≤ cle 11169 2c2 12201 ♯chash 14255 Vtxcvtx 28959 iEdgciedg 28960 UPGraphcupgr 29043 UMGraphcumgr 29044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-i2m1 11096 ax-1ne0 11097 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-2 12209 df-upgr 29045 df-umgr 29046 |
| This theorem is referenced by: umgruhgr 29067 upgr0e 29074 umgrislfupgr 29086 nbumgrvtx 29309 umgrwlknloop 29612 umgrwwlks2on 29920 umgr3v3e3cycl 30146 konigsberg 30219 |
| Copyright terms: Public domain | W3C validator |