| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgrupgr | Structured version Visualization version GIF version | ||
| Description: An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| umgrupgr | ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2735 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 1, 2 | isumgr 29020 | . . . 4 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ UMGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
| 4 | id 22 | . . . . 5 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) | |
| 5 | 2re 12312 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
| 6 | 5 | leidi 11769 | . . . . . . . . . 10 ⊢ 2 ≤ 2 |
| 7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ ((♯‘𝑥) = 2 → 2 ≤ 2) |
| 8 | breq1 5122 | . . . . . . . . 9 ⊢ ((♯‘𝑥) = 2 → ((♯‘𝑥) ≤ 2 ↔ 2 ≤ 2)) | |
| 9 | 7, 8 | mpbird 257 | . . . . . . . 8 ⊢ ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2) |
| 10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2)) |
| 11 | 10 | ss2rabi 4052 | . . . . . 6 ⊢ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 13 | 4, 12 | fssd 6722 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 14 | 3, 13 | biimtrdi 253 | . . 3 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ UMGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 15 | 14 | pm2.43i 52 | . 2 ⊢ (𝐺 ∈ UMGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 16 | 1, 2 | isupgr 29009 | . 2 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 17 | 15, 16 | mpbird 257 | 1 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3415 ∖ cdif 3923 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 {csn 4601 class class class wbr 5119 dom cdm 5654 ⟶wf 6526 ‘cfv 6530 ≤ cle 11268 2c2 12293 ♯chash 14346 Vtxcvtx 28921 iEdgciedg 28922 UPGraphcupgr 29005 UMGraphcumgr 29006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-i2m1 11195 ax-1ne0 11196 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-2 12301 df-upgr 29007 df-umgr 29008 |
| This theorem is referenced by: umgruhgr 29029 upgr0e 29036 umgrislfupgr 29048 nbumgrvtx 29271 umgrwlknloop 29575 umgrwwlks2on 29885 umgr3v3e3cycl 30111 konigsberg 30184 |
| Copyright terms: Public domain | W3C validator |