| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgrupgr | Structured version Visualization version GIF version | ||
| Description: An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| umgrupgr | ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 1, 2 | isumgr 29071 | . . . 4 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ UMGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
| 4 | id 22 | . . . . 5 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) | |
| 5 | 2re 12196 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
| 6 | 5 | leidi 11648 | . . . . . . . . . 10 ⊢ 2 ≤ 2 |
| 7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ ((♯‘𝑥) = 2 → 2 ≤ 2) |
| 8 | breq1 5094 | . . . . . . . . 9 ⊢ ((♯‘𝑥) = 2 → ((♯‘𝑥) ≤ 2 ↔ 2 ≤ 2)) | |
| 9 | 7, 8 | mpbird 257 | . . . . . . . 8 ⊢ ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2) |
| 10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2)) |
| 11 | 10 | ss2rabi 4027 | . . . . . 6 ⊢ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 13 | 4, 12 | fssd 6668 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 14 | 3, 13 | biimtrdi 253 | . . 3 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ UMGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 15 | 14 | pm2.43i 52 | . 2 ⊢ (𝐺 ∈ UMGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 16 | 1, 2 | isupgr 29060 | . 2 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 17 | 15, 16 | mpbird 257 | 1 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ∖ cdif 3899 ⊆ wss 3902 ∅c0 4283 𝒫 cpw 4550 {csn 4576 class class class wbr 5091 dom cdm 5616 ⟶wf 6477 ‘cfv 6481 ≤ cle 11144 2c2 12177 ♯chash 14234 Vtxcvtx 28972 iEdgciedg 28973 UPGraphcupgr 29056 UMGraphcumgr 29057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-i2m1 11071 ax-1ne0 11072 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-2 12185 df-upgr 29058 df-umgr 29059 |
| This theorem is referenced by: umgruhgr 29080 upgr0e 29087 umgrislfupgr 29099 nbumgrvtx 29322 umgrwlknloop 29625 umgrwwlks2on 29933 umgr3v3e3cycl 30159 konigsberg 30232 |
| Copyright terms: Public domain | W3C validator |