MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrupgr Structured version   Visualization version   GIF version

Theorem umgrupgr 29083
Description: An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020.)
Assertion
Ref Expression
umgrupgr (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)

Proof of Theorem umgrupgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2733 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2isumgr 29075 . . . 4 (𝐺 ∈ UMGraph → (𝐺 ∈ UMGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
4 id 22 . . . . 5 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
5 2re 12206 . . . . . . . . . . 11 2 ∈ ℝ
65leidi 11658 . . . . . . . . . 10 2 ≤ 2
76a1i 11 . . . . . . . . 9 ((♯‘𝑥) = 2 → 2 ≤ 2)
8 breq1 5096 . . . . . . . . 9 ((♯‘𝑥) = 2 → ((♯‘𝑥) ≤ 2 ↔ 2 ≤ 2))
97, 8mpbird 257 . . . . . . . 8 ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2)
109a1i 11 . . . . . . 7 (𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2))
1110ss2rabi 4025 . . . . . 6 {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
1211a1i 11 . . . . 5 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
134, 12fssd 6673 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
143, 13biimtrdi 253 . . 3 (𝐺 ∈ UMGraph → (𝐺 ∈ UMGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1514pm2.43i 52 . 2 (𝐺 ∈ UMGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
161, 2isupgr 29064 . 2 (𝐺 ∈ UMGraph → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1715, 16mpbird 257 1 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {crab 3396  cdif 3895  wss 3898  c0 4282  𝒫 cpw 4549  {csn 4575   class class class wbr 5093  dom cdm 5619  wf 6482  cfv 6486  cle 11154  2c2 12187  chash 14239  Vtxcvtx 28976  iEdgciedg 28977  UPGraphcupgr 29060  UMGraphcumgr 29061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-i2m1 11081  ax-1ne0 11082  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-2 12195  df-upgr 29062  df-umgr 29063
This theorem is referenced by:  umgruhgr  29084  upgr0e  29091  umgrislfupgr  29103  nbumgrvtx  29326  umgrwlknloop  29629  umgrwwlks2on  29939  umgr3v3e3cycl  30166  konigsberg  30239
  Copyright terms: Public domain W3C validator