| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrelatglb | Structured version Visualization version GIF version | ||
| Description: Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.) See mrelatglbALT 49106 for an alternate proof. |
| Ref | Expression |
|---|---|
| mreclat.i | ⊢ 𝐼 = (toInc‘𝐶) |
| mrelatglb.g | ⊢ 𝐺 = (glb‘𝐼) |
| Ref | Expression |
|---|---|
| mrelatglb | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → (𝐺‘𝑈) = ∩ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (le‘𝐼) = (le‘𝐼) | |
| 2 | mreclat.i | . . . 4 ⊢ 𝐼 = (toInc‘𝐶) | |
| 3 | 2 | ipobas 18437 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼)) |
| 4 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝐶 = (Base‘𝐼)) |
| 5 | mrelatglb.g | . . 3 ⊢ 𝐺 = (glb‘𝐼) | |
| 6 | 5 | a1i 11 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝐺 = (glb‘𝐼)) |
| 7 | 2 | ipopos 18442 | . . 3 ⊢ 𝐼 ∈ Poset |
| 8 | 7 | a1i 11 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝐼 ∈ Poset) |
| 9 | simp2 1137 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝑈 ⊆ 𝐶) | |
| 10 | mreintcl 17497 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → ∩ 𝑈 ∈ 𝐶) | |
| 11 | intss1 4911 | . . . 4 ⊢ (𝑥 ∈ 𝑈 → ∩ 𝑈 ⊆ 𝑥) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∩ 𝑈 ⊆ 𝑥) |
| 13 | simpl1 1192 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) | |
| 14 | 10 | adantr 480 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∩ 𝑈 ∈ 𝐶) |
| 15 | 9 | sselda 3929 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐶) |
| 16 | 2, 1 | ipole 18440 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∩ 𝑈 ∈ 𝐶 ∧ 𝑥 ∈ 𝐶) → (∩ 𝑈(le‘𝐼)𝑥 ↔ ∩ 𝑈 ⊆ 𝑥)) |
| 17 | 13, 14, 15, 16 | syl3anc 1373 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → (∩ 𝑈(le‘𝐼)𝑥 ↔ ∩ 𝑈 ⊆ 𝑥)) |
| 18 | 12, 17 | mpbird 257 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∩ 𝑈(le‘𝐼)𝑥) |
| 19 | simpll1 1213 | . . . . . . . 8 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) | |
| 20 | simplr 768 | . . . . . . . 8 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑦 ∈ 𝐶) | |
| 21 | simpl2 1193 | . . . . . . . . 9 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) → 𝑈 ⊆ 𝐶) | |
| 22 | 21 | sselda 3929 | . . . . . . . 8 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐶) |
| 23 | 2, 1 | ipole 18440 | . . . . . . . 8 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ 𝐶) → (𝑦(le‘𝐼)𝑥 ↔ 𝑦 ⊆ 𝑥)) |
| 24 | 19, 20, 22, 23 | syl3anc 1373 | . . . . . . 7 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝑦(le‘𝐼)𝑥 ↔ 𝑦 ⊆ 𝑥)) |
| 25 | 24 | biimpd 229 | . . . . . 6 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝑦(le‘𝐼)𝑥 → 𝑦 ⊆ 𝑥)) |
| 26 | 25 | ralimdva 3144 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) → (∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥 → ∀𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥)) |
| 27 | 26 | 3impia 1117 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → ∀𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥) |
| 28 | ssint 4912 | . . . 4 ⊢ (𝑦 ⊆ ∩ 𝑈 ↔ ∀𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥) | |
| 29 | 27, 28 | sylibr 234 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → 𝑦 ⊆ ∩ 𝑈) |
| 30 | simp11 1204 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → 𝐶 ∈ (Moore‘𝑋)) | |
| 31 | simp2 1137 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → 𝑦 ∈ 𝐶) | |
| 32 | 10 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → ∩ 𝑈 ∈ 𝐶) |
| 33 | 2, 1 | ipole 18440 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦 ∈ 𝐶 ∧ ∩ 𝑈 ∈ 𝐶) → (𝑦(le‘𝐼)∩ 𝑈 ↔ 𝑦 ⊆ ∩ 𝑈)) |
| 34 | 30, 31, 32, 33 | syl3anc 1373 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → (𝑦(le‘𝐼)∩ 𝑈 ↔ 𝑦 ⊆ ∩ 𝑈)) |
| 35 | 29, 34 | mpbird 257 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → 𝑦(le‘𝐼)∩ 𝑈) |
| 36 | 1, 4, 6, 8, 9, 10, 18, 35 | posglbdg 18319 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → (𝐺‘𝑈) = ∩ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⊆ wss 3897 ∅c0 4280 ∩ cint 4895 class class class wbr 5089 ‘cfv 6481 Basecbs 17120 lecple 17168 Moorecmre 17484 Posetcpo 18213 glbcglb 18216 toInccipo 18433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-tset 17180 df-ple 17181 df-ocomp 17182 df-mre 17488 df-odu 18193 df-proset 18200 df-poset 18219 df-lub 18250 df-glb 18251 df-ipo 18434 |
| This theorem is referenced by: mreclatBAD 18469 |
| Copyright terms: Public domain | W3C validator |