MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrelatglb Structured version   Visualization version   GIF version

Theorem mrelatglb 17664
Description: Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypotheses
Ref Expression
mreclat.i 𝐼 = (toInc‘𝐶)
mrelatglb.g 𝐺 = (glb‘𝐼)
Assertion
Ref Expression
mrelatglb ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) → (𝐺𝑈) = 𝑈)

Proof of Theorem mrelatglb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2780 . 2 (le‘𝐼) = (le‘𝐼)
2 mreclat.i . . . 4 𝐼 = (toInc‘𝐶)
32ipobas 17635 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼))
433ad2ant1 1114 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) → 𝐶 = (Base‘𝐼))
5 mrelatglb.g . . 3 𝐺 = (glb‘𝐼)
65a1i 11 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) → 𝐺 = (glb‘𝐼))
72ipopos 17640 . . 3 𝐼 ∈ Poset
87a1i 11 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) → 𝐼 ∈ Poset)
9 simp2 1118 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) → 𝑈𝐶)
10 mreintcl 16736 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) → 𝑈𝐶)
11 intss1 4769 . . . 4 (𝑥𝑈 𝑈𝑥)
1211adantl 474 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑥𝑈) → 𝑈𝑥)
13 simpl1 1172 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑥𝑈) → 𝐶 ∈ (Moore‘𝑋))
1410adantr 473 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑥𝑈) → 𝑈𝐶)
159sselda 3860 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑥𝑈) → 𝑥𝐶)
162, 1ipole 17638 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑥𝐶) → ( 𝑈(le‘𝐼)𝑥 𝑈𝑥))
1713, 14, 15, 16syl3anc 1352 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑥𝑈) → ( 𝑈(le‘𝐼)𝑥 𝑈𝑥))
1812, 17mpbird 249 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑥𝑈) → 𝑈(le‘𝐼)𝑥)
19 simpll1 1193 . . . . . . . 8 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑦𝐶) ∧ 𝑥𝑈) → 𝐶 ∈ (Moore‘𝑋))
20 simplr 757 . . . . . . . 8 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑦𝐶) ∧ 𝑥𝑈) → 𝑦𝐶)
21 simpl2 1173 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑦𝐶) → 𝑈𝐶)
2221sselda 3860 . . . . . . . 8 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑦𝐶) ∧ 𝑥𝑈) → 𝑥𝐶)
232, 1ipole 17638 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦𝐶𝑥𝐶) → (𝑦(le‘𝐼)𝑥𝑦𝑥))
2419, 20, 22, 23syl3anc 1352 . . . . . . 7 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑦𝐶) ∧ 𝑥𝑈) → (𝑦(le‘𝐼)𝑥𝑦𝑥))
2524biimpd 221 . . . . . 6 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑦𝐶) ∧ 𝑥𝑈) → (𝑦(le‘𝐼)𝑥𝑦𝑥))
2625ralimdva 3129 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑦𝐶) → (∀𝑥𝑈 𝑦(le‘𝐼)𝑥 → ∀𝑥𝑈 𝑦𝑥))
27263impia 1098 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑦(le‘𝐼)𝑥) → ∀𝑥𝑈 𝑦𝑥)
28 ssint 4770 . . . 4 (𝑦 𝑈 ↔ ∀𝑥𝑈 𝑦𝑥)
2927, 28sylibr 226 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑦(le‘𝐼)𝑥) → 𝑦 𝑈)
30 simp11 1184 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑦(le‘𝐼)𝑥) → 𝐶 ∈ (Moore‘𝑋))
31 simp2 1118 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑦(le‘𝐼)𝑥) → 𝑦𝐶)
32103ad2ant1 1114 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑦(le‘𝐼)𝑥) → 𝑈𝐶)
332, 1ipole 17638 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦𝐶 𝑈𝐶) → (𝑦(le‘𝐼) 𝑈𝑦 𝑈))
3430, 31, 32, 33syl3anc 1352 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑦(le‘𝐼)𝑥) → (𝑦(le‘𝐼) 𝑈𝑦 𝑈))
3529, 34mpbird 249 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) ∧ 𝑦𝐶 ∧ ∀𝑥𝑈 𝑦(le‘𝐼)𝑥) → 𝑦(le‘𝐼) 𝑈)
361, 4, 6, 8, 9, 10, 18, 35posglbd 17630 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) → (𝐺𝑈) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wcel 2051  wne 2969  wral 3090  wss 3831  c0 4181   cint 4754   class class class wbr 4934  cfv 6193  Basecbs 16345  lecple 16434  Moorecmre 16723  Posetcpo 17420  glbcglb 17423  toInccipo 17631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-oadd 7915  df-er 8095  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-nn 11446  df-2 11509  df-3 11510  df-4 11511  df-5 11512  df-6 11513  df-7 11514  df-8 11515  df-9 11516  df-n0 11714  df-z 11800  df-dec 11918  df-uz 12065  df-fz 12715  df-struct 16347  df-ndx 16348  df-slot 16349  df-base 16351  df-sets 16352  df-tset 16446  df-ple 16447  df-ocomp 16448  df-mre 16727  df-proset 17408  df-poset 17426  df-lub 17454  df-glb 17455  df-odu 17609  df-ipo 17632
This theorem is referenced by:  mreclatBAD  17667
  Copyright terms: Public domain W3C validator