| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrelatglb | Structured version Visualization version GIF version | ||
| Description: Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.) See mrelatglbALT 48988 for an alternate proof. |
| Ref | Expression |
|---|---|
| mreclat.i | ⊢ 𝐼 = (toInc‘𝐶) |
| mrelatglb.g | ⊢ 𝐺 = (glb‘𝐼) |
| Ref | Expression |
|---|---|
| mrelatglb | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → (𝐺‘𝑈) = ∩ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ (le‘𝐼) = (le‘𝐼) | |
| 2 | mreclat.i | . . . 4 ⊢ 𝐼 = (toInc‘𝐶) | |
| 3 | 2 | ipobas 18497 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼)) |
| 4 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝐶 = (Base‘𝐼)) |
| 5 | mrelatglb.g | . . 3 ⊢ 𝐺 = (glb‘𝐼) | |
| 6 | 5 | a1i 11 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝐺 = (glb‘𝐼)) |
| 7 | 2 | ipopos 18502 | . . 3 ⊢ 𝐼 ∈ Poset |
| 8 | 7 | a1i 11 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝐼 ∈ Poset) |
| 9 | simp2 1137 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝑈 ⊆ 𝐶) | |
| 10 | mreintcl 17563 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → ∩ 𝑈 ∈ 𝐶) | |
| 11 | intss1 4930 | . . . 4 ⊢ (𝑥 ∈ 𝑈 → ∩ 𝑈 ⊆ 𝑥) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∩ 𝑈 ⊆ 𝑥) |
| 13 | simpl1 1192 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) | |
| 14 | 10 | adantr 480 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∩ 𝑈 ∈ 𝐶) |
| 15 | 9 | sselda 3949 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐶) |
| 16 | 2, 1 | ipole 18500 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∩ 𝑈 ∈ 𝐶 ∧ 𝑥 ∈ 𝐶) → (∩ 𝑈(le‘𝐼)𝑥 ↔ ∩ 𝑈 ⊆ 𝑥)) |
| 17 | 13, 14, 15, 16 | syl3anc 1373 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → (∩ 𝑈(le‘𝐼)𝑥 ↔ ∩ 𝑈 ⊆ 𝑥)) |
| 18 | 12, 17 | mpbird 257 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∩ 𝑈(le‘𝐼)𝑥) |
| 19 | simpll1 1213 | . . . . . . . 8 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) | |
| 20 | simplr 768 | . . . . . . . 8 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑦 ∈ 𝐶) | |
| 21 | simpl2 1193 | . . . . . . . . 9 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) → 𝑈 ⊆ 𝐶) | |
| 22 | 21 | sselda 3949 | . . . . . . . 8 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐶) |
| 23 | 2, 1 | ipole 18500 | . . . . . . . 8 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ 𝐶) → (𝑦(le‘𝐼)𝑥 ↔ 𝑦 ⊆ 𝑥)) |
| 24 | 19, 20, 22, 23 | syl3anc 1373 | . . . . . . 7 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝑦(le‘𝐼)𝑥 ↔ 𝑦 ⊆ 𝑥)) |
| 25 | 24 | biimpd 229 | . . . . . 6 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝑦(le‘𝐼)𝑥 → 𝑦 ⊆ 𝑥)) |
| 26 | 25 | ralimdva 3146 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) → (∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥 → ∀𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥)) |
| 27 | 26 | 3impia 1117 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → ∀𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥) |
| 28 | ssint 4931 | . . . 4 ⊢ (𝑦 ⊆ ∩ 𝑈 ↔ ∀𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥) | |
| 29 | 27, 28 | sylibr 234 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → 𝑦 ⊆ ∩ 𝑈) |
| 30 | simp11 1204 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → 𝐶 ∈ (Moore‘𝑋)) | |
| 31 | simp2 1137 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → 𝑦 ∈ 𝐶) | |
| 32 | 10 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → ∩ 𝑈 ∈ 𝐶) |
| 33 | 2, 1 | ipole 18500 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦 ∈ 𝐶 ∧ ∩ 𝑈 ∈ 𝐶) → (𝑦(le‘𝐼)∩ 𝑈 ↔ 𝑦 ⊆ ∩ 𝑈)) |
| 34 | 30, 31, 32, 33 | syl3anc 1373 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → (𝑦(le‘𝐼)∩ 𝑈 ↔ 𝑦 ⊆ ∩ 𝑈)) |
| 35 | 29, 34 | mpbird 257 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → 𝑦(le‘𝐼)∩ 𝑈) |
| 36 | 1, 4, 6, 8, 9, 10, 18, 35 | posglbdg 18381 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → (𝐺‘𝑈) = ∩ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ⊆ wss 3917 ∅c0 4299 ∩ cint 4913 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 lecple 17234 Moorecmre 17550 Posetcpo 18275 glbcglb 18278 toInccipo 18493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-tset 17246 df-ple 17247 df-ocomp 17248 df-mre 17554 df-odu 18255 df-proset 18262 df-poset 18281 df-lub 18312 df-glb 18313 df-ipo 18494 |
| This theorem is referenced by: mreclatBAD 18529 |
| Copyright terms: Public domain | W3C validator |