![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrelatglb | Structured version Visualization version GIF version |
Description: Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mreclat.i | ⊢ 𝐼 = (toInc‘𝐶) |
mrelatglb.g | ⊢ 𝐺 = (glb‘𝐼) |
Ref | Expression |
---|---|
mrelatglb | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → (𝐺‘𝑈) = ∩ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2780 | . 2 ⊢ (le‘𝐼) = (le‘𝐼) | |
2 | mreclat.i | . . . 4 ⊢ 𝐼 = (toInc‘𝐶) | |
3 | 2 | ipobas 17635 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼)) |
4 | 3 | 3ad2ant1 1114 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝐶 = (Base‘𝐼)) |
5 | mrelatglb.g | . . 3 ⊢ 𝐺 = (glb‘𝐼) | |
6 | 5 | a1i 11 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝐺 = (glb‘𝐼)) |
7 | 2 | ipopos 17640 | . . 3 ⊢ 𝐼 ∈ Poset |
8 | 7 | a1i 11 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝐼 ∈ Poset) |
9 | simp2 1118 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝑈 ⊆ 𝐶) | |
10 | mreintcl 16736 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → ∩ 𝑈 ∈ 𝐶) | |
11 | intss1 4769 | . . . 4 ⊢ (𝑥 ∈ 𝑈 → ∩ 𝑈 ⊆ 𝑥) | |
12 | 11 | adantl 474 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∩ 𝑈 ⊆ 𝑥) |
13 | simpl1 1172 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) | |
14 | 10 | adantr 473 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∩ 𝑈 ∈ 𝐶) |
15 | 9 | sselda 3860 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐶) |
16 | 2, 1 | ipole 17638 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∩ 𝑈 ∈ 𝐶 ∧ 𝑥 ∈ 𝐶) → (∩ 𝑈(le‘𝐼)𝑥 ↔ ∩ 𝑈 ⊆ 𝑥)) |
17 | 13, 14, 15, 16 | syl3anc 1352 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → (∩ 𝑈(le‘𝐼)𝑥 ↔ ∩ 𝑈 ⊆ 𝑥)) |
18 | 12, 17 | mpbird 249 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∩ 𝑈(le‘𝐼)𝑥) |
19 | simpll1 1193 | . . . . . . . 8 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) | |
20 | simplr 757 | . . . . . . . 8 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑦 ∈ 𝐶) | |
21 | simpl2 1173 | . . . . . . . . 9 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) → 𝑈 ⊆ 𝐶) | |
22 | 21 | sselda 3860 | . . . . . . . 8 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐶) |
23 | 2, 1 | ipole 17638 | . . . . . . . 8 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ 𝐶) → (𝑦(le‘𝐼)𝑥 ↔ 𝑦 ⊆ 𝑥)) |
24 | 19, 20, 22, 23 | syl3anc 1352 | . . . . . . 7 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝑦(le‘𝐼)𝑥 ↔ 𝑦 ⊆ 𝑥)) |
25 | 24 | biimpd 221 | . . . . . 6 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝑦(le‘𝐼)𝑥 → 𝑦 ⊆ 𝑥)) |
26 | 25 | ralimdva 3129 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) → (∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥 → ∀𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥)) |
27 | 26 | 3impia 1098 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → ∀𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥) |
28 | ssint 4770 | . . . 4 ⊢ (𝑦 ⊆ ∩ 𝑈 ↔ ∀𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥) | |
29 | 27, 28 | sylibr 226 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → 𝑦 ⊆ ∩ 𝑈) |
30 | simp11 1184 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → 𝐶 ∈ (Moore‘𝑋)) | |
31 | simp2 1118 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → 𝑦 ∈ 𝐶) | |
32 | 10 | 3ad2ant1 1114 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → ∩ 𝑈 ∈ 𝐶) |
33 | 2, 1 | ipole 17638 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦 ∈ 𝐶 ∧ ∩ 𝑈 ∈ 𝐶) → (𝑦(le‘𝐼)∩ 𝑈 ↔ 𝑦 ⊆ ∩ 𝑈)) |
34 | 30, 31, 32, 33 | syl3anc 1352 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → (𝑦(le‘𝐼)∩ 𝑈 ↔ 𝑦 ⊆ ∩ 𝑈)) |
35 | 29, 34 | mpbird 249 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → 𝑦(le‘𝐼)∩ 𝑈) |
36 | 1, 4, 6, 8, 9, 10, 18, 35 | posglbd 17630 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → (𝐺‘𝑈) = ∩ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 ≠ wne 2969 ∀wral 3090 ⊆ wss 3831 ∅c0 4181 ∩ cint 4754 class class class wbr 4934 ‘cfv 6193 Basecbs 16345 lecple 16434 Moorecmre 16723 Posetcpo 17420 glbcglb 17423 toInccipo 17631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-int 4755 df-iun 4799 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-om 7403 df-1st 7507 df-2nd 7508 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-1o 7911 df-oadd 7915 df-er 8095 df-en 8313 df-dom 8314 df-sdom 8315 df-fin 8316 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-nn 11446 df-2 11509 df-3 11510 df-4 11511 df-5 11512 df-6 11513 df-7 11514 df-8 11515 df-9 11516 df-n0 11714 df-z 11800 df-dec 11918 df-uz 12065 df-fz 12715 df-struct 16347 df-ndx 16348 df-slot 16349 df-base 16351 df-sets 16352 df-tset 16446 df-ple 16447 df-ocomp 16448 df-mre 16727 df-proset 17408 df-poset 17426 df-lub 17454 df-glb 17455 df-odu 17609 df-ipo 17632 |
This theorem is referenced by: mreclatBAD 17667 |
Copyright terms: Public domain | W3C validator |