| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrelatglb | Structured version Visualization version GIF version | ||
| Description: Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.) See mrelatglbALT 48984 for an alternate proof. |
| Ref | Expression |
|---|---|
| mreclat.i | ⊢ 𝐼 = (toInc‘𝐶) |
| mrelatglb.g | ⊢ 𝐺 = (glb‘𝐼) |
| Ref | Expression |
|---|---|
| mrelatglb | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → (𝐺‘𝑈) = ∩ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (le‘𝐼) = (le‘𝐼) | |
| 2 | mreclat.i | . . . 4 ⊢ 𝐼 = (toInc‘𝐶) | |
| 3 | 2 | ipobas 18490 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼)) |
| 4 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝐶 = (Base‘𝐼)) |
| 5 | mrelatglb.g | . . 3 ⊢ 𝐺 = (glb‘𝐼) | |
| 6 | 5 | a1i 11 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝐺 = (glb‘𝐼)) |
| 7 | 2 | ipopos 18495 | . . 3 ⊢ 𝐼 ∈ Poset |
| 8 | 7 | a1i 11 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝐼 ∈ Poset) |
| 9 | simp2 1137 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝑈 ⊆ 𝐶) | |
| 10 | mreintcl 17556 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → ∩ 𝑈 ∈ 𝐶) | |
| 11 | intss1 4927 | . . . 4 ⊢ (𝑥 ∈ 𝑈 → ∩ 𝑈 ⊆ 𝑥) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∩ 𝑈 ⊆ 𝑥) |
| 13 | simpl1 1192 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) | |
| 14 | 10 | adantr 480 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∩ 𝑈 ∈ 𝐶) |
| 15 | 9 | sselda 3946 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐶) |
| 16 | 2, 1 | ipole 18493 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∩ 𝑈 ∈ 𝐶 ∧ 𝑥 ∈ 𝐶) → (∩ 𝑈(le‘𝐼)𝑥 ↔ ∩ 𝑈 ⊆ 𝑥)) |
| 17 | 13, 14, 15, 16 | syl3anc 1373 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → (∩ 𝑈(le‘𝐼)𝑥 ↔ ∩ 𝑈 ⊆ 𝑥)) |
| 18 | 12, 17 | mpbird 257 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑥 ∈ 𝑈) → ∩ 𝑈(le‘𝐼)𝑥) |
| 19 | simpll1 1213 | . . . . . . . 8 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) | |
| 20 | simplr 768 | . . . . . . . 8 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑦 ∈ 𝐶) | |
| 21 | simpl2 1193 | . . . . . . . . 9 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) → 𝑈 ⊆ 𝐶) | |
| 22 | 21 | sselda 3946 | . . . . . . . 8 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐶) |
| 23 | 2, 1 | ipole 18493 | . . . . . . . 8 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ 𝐶) → (𝑦(le‘𝐼)𝑥 ↔ 𝑦 ⊆ 𝑥)) |
| 24 | 19, 20, 22, 23 | syl3anc 1373 | . . . . . . 7 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝑦(le‘𝐼)𝑥 ↔ 𝑦 ⊆ 𝑥)) |
| 25 | 24 | biimpd 229 | . . . . . 6 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝑈) → (𝑦(le‘𝐼)𝑥 → 𝑦 ⊆ 𝑥)) |
| 26 | 25 | ralimdva 3145 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶) → (∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥 → ∀𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥)) |
| 27 | 26 | 3impia 1117 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → ∀𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥) |
| 28 | ssint 4928 | . . . 4 ⊢ (𝑦 ⊆ ∩ 𝑈 ↔ ∀𝑥 ∈ 𝑈 𝑦 ⊆ 𝑥) | |
| 29 | 27, 28 | sylibr 234 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → 𝑦 ⊆ ∩ 𝑈) |
| 30 | simp11 1204 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → 𝐶 ∈ (Moore‘𝑋)) | |
| 31 | simp2 1137 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → 𝑦 ∈ 𝐶) | |
| 32 | 10 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → ∩ 𝑈 ∈ 𝐶) |
| 33 | 2, 1 | ipole 18493 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦 ∈ 𝐶 ∧ ∩ 𝑈 ∈ 𝐶) → (𝑦(le‘𝐼)∩ 𝑈 ↔ 𝑦 ⊆ ∩ 𝑈)) |
| 34 | 30, 31, 32, 33 | syl3anc 1373 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → (𝑦(le‘𝐼)∩ 𝑈 ↔ 𝑦 ⊆ ∩ 𝑈)) |
| 35 | 29, 34 | mpbird 257 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) ∧ 𝑦 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝑈 𝑦(le‘𝐼)𝑥) → 𝑦(le‘𝐼)∩ 𝑈) |
| 36 | 1, 4, 6, 8, 9, 10, 18, 35 | posglbdg 18374 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → (𝐺‘𝑈) = ∩ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3914 ∅c0 4296 ∩ cint 4910 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 lecple 17227 Moorecmre 17543 Posetcpo 18268 glbcglb 18271 toInccipo 18486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-tset 17239 df-ple 17240 df-ocomp 17241 df-mre 17547 df-odu 18248 df-proset 18255 df-poset 18274 df-lub 18305 df-glb 18306 df-ipo 18487 |
| This theorem is referenced by: mreclatBAD 18522 |
| Copyright terms: Public domain | W3C validator |