Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ipoglblem Structured version   Visualization version   GIF version

Theorem ipoglblem 48977
Description: Lemma for ipoglbdm 48978 and ipoglb 48979. (Contributed by Zhi Wang, 29-Sep-2024.)
Hypotheses
Ref Expression
ipolub.i 𝐼 = (toInc‘𝐹)
ipolub.f (𝜑𝐹𝑉)
ipolub.s (𝜑𝑆𝐹)
ipoglblem.l = (le‘𝐼)
Assertion
Ref Expression
ipoglblem ((𝜑𝑋𝐹) → ((𝑋 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑋)) ↔ (∀𝑦𝑆 𝑋 𝑦 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑋))))
Distinct variable groups:   𝑦,𝐹,𝑧   𝑦,𝑆   𝑦,𝑋,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑧)   𝐼(𝑦,𝑧)   (𝑦,𝑧)   𝑉(𝑦,𝑧)

Proof of Theorem ipoglblem
StepHypRef Expression
1 ssint 4914 . . 3 (𝑋 𝑆 ↔ ∀𝑦𝑆 𝑋𝑦)
2 ipolub.f . . . . . 6 (𝜑𝐹𝑉)
32ad2antrr 726 . . . . 5 (((𝜑𝑋𝐹) ∧ 𝑦𝑆) → 𝐹𝑉)
4 simplr 768 . . . . 5 (((𝜑𝑋𝐹) ∧ 𝑦𝑆) → 𝑋𝐹)
5 ipolub.s . . . . . . 7 (𝜑𝑆𝐹)
65ad2antrr 726 . . . . . 6 (((𝜑𝑋𝐹) ∧ 𝑦𝑆) → 𝑆𝐹)
7 simpr 484 . . . . . 6 (((𝜑𝑋𝐹) ∧ 𝑦𝑆) → 𝑦𝑆)
86, 7sseldd 3936 . . . . 5 (((𝜑𝑋𝐹) ∧ 𝑦𝑆) → 𝑦𝐹)
9 ipolub.i . . . . . 6 𝐼 = (toInc‘𝐹)
10 ipoglblem.l . . . . . 6 = (le‘𝐼)
119, 10ipole 18440 . . . . 5 ((𝐹𝑉𝑋𝐹𝑦𝐹) → (𝑋 𝑦𝑋𝑦))
123, 4, 8, 11syl3anc 1373 . . . 4 (((𝜑𝑋𝐹) ∧ 𝑦𝑆) → (𝑋 𝑦𝑋𝑦))
1312ralbidva 3150 . . 3 ((𝜑𝑋𝐹) → (∀𝑦𝑆 𝑋 𝑦 ↔ ∀𝑦𝑆 𝑋𝑦))
141, 13bitr4id 290 . 2 ((𝜑𝑋𝐹) → (𝑋 𝑆 ↔ ∀𝑦𝑆 𝑋 𝑦))
15 ssint 4914 . . . . 5 (𝑧 𝑆 ↔ ∀𝑦𝑆 𝑧𝑦)
163adantlr 715 . . . . . . 7 ((((𝜑𝑋𝐹) ∧ 𝑧𝐹) ∧ 𝑦𝑆) → 𝐹𝑉)
17 simplr 768 . . . . . . 7 ((((𝜑𝑋𝐹) ∧ 𝑧𝐹) ∧ 𝑦𝑆) → 𝑧𝐹)
188adantlr 715 . . . . . . 7 ((((𝜑𝑋𝐹) ∧ 𝑧𝐹) ∧ 𝑦𝑆) → 𝑦𝐹)
199, 10ipole 18440 . . . . . . 7 ((𝐹𝑉𝑧𝐹𝑦𝐹) → (𝑧 𝑦𝑧𝑦))
2016, 17, 18, 19syl3anc 1373 . . . . . 6 ((((𝜑𝑋𝐹) ∧ 𝑧𝐹) ∧ 𝑦𝑆) → (𝑧 𝑦𝑧𝑦))
2120ralbidva 3150 . . . . 5 (((𝜑𝑋𝐹) ∧ 𝑧𝐹) → (∀𝑦𝑆 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑧𝑦))
2215, 21bitr4id 290 . . . 4 (((𝜑𝑋𝐹) ∧ 𝑧𝐹) → (𝑧 𝑆 ↔ ∀𝑦𝑆 𝑧 𝑦))
232ad2antrr 726 . . . . . 6 (((𝜑𝑋𝐹) ∧ 𝑧𝐹) → 𝐹𝑉)
24 simpr 484 . . . . . 6 (((𝜑𝑋𝐹) ∧ 𝑧𝐹) → 𝑧𝐹)
25 simplr 768 . . . . . 6 (((𝜑𝑋𝐹) ∧ 𝑧𝐹) → 𝑋𝐹)
269, 10ipole 18440 . . . . . 6 ((𝐹𝑉𝑧𝐹𝑋𝐹) → (𝑧 𝑋𝑧𝑋))
2723, 24, 25, 26syl3anc 1373 . . . . 5 (((𝜑𝑋𝐹) ∧ 𝑧𝐹) → (𝑧 𝑋𝑧𝑋))
2827bicomd 223 . . . 4 (((𝜑𝑋𝐹) ∧ 𝑧𝐹) → (𝑧𝑋𝑧 𝑋))
2922, 28imbi12d 344 . . 3 (((𝜑𝑋𝐹) ∧ 𝑧𝐹) → ((𝑧 𝑆𝑧𝑋) ↔ (∀𝑦𝑆 𝑧 𝑦𝑧 𝑋)))
3029ralbidva 3150 . 2 ((𝜑𝑋𝐹) → (∀𝑧𝐹 (𝑧 𝑆𝑧𝑋) ↔ ∀𝑧𝐹 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑋)))
3114, 30anbi12d 632 1 ((𝜑𝑋𝐹) → ((𝑋 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑋)) ↔ (∀𝑦𝑆 𝑋 𝑦 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3903   cint 4896   class class class wbr 5092  cfv 6482  lecple 17168  toInccipo 18433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-tset 17180  df-ple 17181  df-ocomp 17182  df-ipo 18434
This theorem is referenced by:  ipoglbdm  48978  ipoglb  48979
  Copyright terms: Public domain W3C validator