| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ipoglblem | Structured version Visualization version GIF version | ||
| Description: Lemma for ipoglbdm 48951 and ipoglb 48952. (Contributed by Zhi Wang, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
| ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
| ipoglblem.l | ⊢ ≤ = (le‘𝐼) |
| Ref | Expression |
|---|---|
| ipoglblem | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → ((𝑋 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋)) ↔ (∀𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint 4924 | . . 3 ⊢ (𝑋 ⊆ ∩ 𝑆 ↔ ∀𝑦 ∈ 𝑆 𝑋 ⊆ 𝑦) | |
| 2 | ipolub.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | 2 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝐹 ∈ 𝑉) |
| 4 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑋 ∈ 𝐹) | |
| 5 | ipolub.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
| 6 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑆 ⊆ 𝐹) |
| 7 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
| 8 | 6, 7 | sseldd 3944 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐹) |
| 9 | ipolub.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐹) | |
| 10 | ipoglblem.l | . . . . . 6 ⊢ ≤ = (le‘𝐼) | |
| 11 | 9, 10 | ipole 18469 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑋 ≤ 𝑦 ↔ 𝑋 ⊆ 𝑦)) |
| 12 | 3, 4, 8, 11 | syl3anc 1373 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → (𝑋 ≤ 𝑦 ↔ 𝑋 ⊆ 𝑦)) |
| 13 | 12 | ralbidva 3154 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → (∀𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑋 ⊆ 𝑦)) |
| 14 | 1, 13 | bitr4id 290 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → (𝑋 ⊆ ∩ 𝑆 ↔ ∀𝑦 ∈ 𝑆 𝑋 ≤ 𝑦)) |
| 15 | ssint 4924 | . . . . 5 ⊢ (𝑧 ⊆ ∩ 𝑆 ↔ ∀𝑦 ∈ 𝑆 𝑧 ⊆ 𝑦) | |
| 16 | 3 | adantlr 715 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝐹 ∈ 𝑉) |
| 17 | simplr 768 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑧 ∈ 𝐹) | |
| 18 | 8 | adantlr 715 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐹) |
| 19 | 9, 10 | ipole 18469 | . . . . . . 7 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑧 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑧 ≤ 𝑦 ↔ 𝑧 ⊆ 𝑦)) |
| 20 | 16, 17, 18, 19 | syl3anc 1373 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → (𝑧 ≤ 𝑦 ↔ 𝑧 ⊆ 𝑦)) |
| 21 | 20 | ralbidva 3154 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑧 ⊆ 𝑦)) |
| 22 | 15, 21 | bitr4id 290 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → (𝑧 ⊆ ∩ 𝑆 ↔ ∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦)) |
| 23 | 2 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → 𝐹 ∈ 𝑉) |
| 24 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → 𝑧 ∈ 𝐹) | |
| 25 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → 𝑋 ∈ 𝐹) | |
| 26 | 9, 10 | ipole 18469 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑧 ∈ 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝑧 ≤ 𝑋 ↔ 𝑧 ⊆ 𝑋)) |
| 27 | 23, 24, 25, 26 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → (𝑧 ≤ 𝑋 ↔ 𝑧 ⊆ 𝑋)) |
| 28 | 27 | bicomd 223 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → (𝑧 ⊆ 𝑋 ↔ 𝑧 ≤ 𝑋)) |
| 29 | 22, 28 | imbi12d 344 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → ((𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋) ↔ (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋))) |
| 30 | 29 | ralbidva 3154 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → (∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋) ↔ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋))) |
| 31 | 14, 30 | anbi12d 632 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → ((𝑋 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋)) ↔ (∀𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 ∩ cint 4906 class class class wbr 5102 ‘cfv 6499 lecple 17203 toInccipo 18462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-tset 17215 df-ple 17216 df-ocomp 17217 df-ipo 18463 |
| This theorem is referenced by: ipoglbdm 48951 ipoglb 48952 |
| Copyright terms: Public domain | W3C validator |