Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ipoglblem | Structured version Visualization version GIF version |
Description: Lemma for ipoglbdm 46164 and ipoglb 46165. (Contributed by Zhi Wang, 29-Sep-2024.) |
Ref | Expression |
---|---|
ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
ipoglblem.l | ⊢ ≤ = (le‘𝐼) |
Ref | Expression |
---|---|
ipoglblem | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → ((𝑋 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋)) ↔ (∀𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 4892 | . . 3 ⊢ (𝑋 ⊆ ∩ 𝑆 ↔ ∀𝑦 ∈ 𝑆 𝑋 ⊆ 𝑦) | |
2 | ipolub.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
3 | 2 | ad2antrr 722 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝐹 ∈ 𝑉) |
4 | simplr 765 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑋 ∈ 𝐹) | |
5 | ipolub.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
6 | 5 | ad2antrr 722 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑆 ⊆ 𝐹) |
7 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
8 | 6, 7 | sseldd 3918 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐹) |
9 | ipolub.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐹) | |
10 | ipoglblem.l | . . . . . 6 ⊢ ≤ = (le‘𝐼) | |
11 | 9, 10 | ipole 18167 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑋 ≤ 𝑦 ↔ 𝑋 ⊆ 𝑦)) |
12 | 3, 4, 8, 11 | syl3anc 1369 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → (𝑋 ≤ 𝑦 ↔ 𝑋 ⊆ 𝑦)) |
13 | 12 | ralbidva 3119 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → (∀𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑋 ⊆ 𝑦)) |
14 | 1, 13 | bitr4id 289 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → (𝑋 ⊆ ∩ 𝑆 ↔ ∀𝑦 ∈ 𝑆 𝑋 ≤ 𝑦)) |
15 | ssint 4892 | . . . . 5 ⊢ (𝑧 ⊆ ∩ 𝑆 ↔ ∀𝑦 ∈ 𝑆 𝑧 ⊆ 𝑦) | |
16 | 3 | adantlr 711 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝐹 ∈ 𝑉) |
17 | simplr 765 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑧 ∈ 𝐹) | |
18 | 8 | adantlr 711 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐹) |
19 | 9, 10 | ipole 18167 | . . . . . . 7 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑧 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑧 ≤ 𝑦 ↔ 𝑧 ⊆ 𝑦)) |
20 | 16, 17, 18, 19 | syl3anc 1369 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → (𝑧 ≤ 𝑦 ↔ 𝑧 ⊆ 𝑦)) |
21 | 20 | ralbidva 3119 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑧 ⊆ 𝑦)) |
22 | 15, 21 | bitr4id 289 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → (𝑧 ⊆ ∩ 𝑆 ↔ ∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦)) |
23 | 2 | ad2antrr 722 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → 𝐹 ∈ 𝑉) |
24 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → 𝑧 ∈ 𝐹) | |
25 | simplr 765 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → 𝑋 ∈ 𝐹) | |
26 | 9, 10 | ipole 18167 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑧 ∈ 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝑧 ≤ 𝑋 ↔ 𝑧 ⊆ 𝑋)) |
27 | 23, 24, 25, 26 | syl3anc 1369 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → (𝑧 ≤ 𝑋 ↔ 𝑧 ⊆ 𝑋)) |
28 | 27 | bicomd 222 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → (𝑧 ⊆ 𝑋 ↔ 𝑧 ≤ 𝑋)) |
29 | 22, 28 | imbi12d 344 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → ((𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋) ↔ (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋))) |
30 | 29 | ralbidva 3119 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → (∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋) ↔ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋))) |
31 | 14, 30 | anbi12d 630 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → ((𝑋 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋)) ↔ (∀𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ∩ cint 4876 class class class wbr 5070 ‘cfv 6418 lecple 16895 toInccipo 18160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-tset 16907 df-ple 16908 df-ocomp 16909 df-ipo 18161 |
This theorem is referenced by: ipoglbdm 46164 ipoglb 46165 |
Copyright terms: Public domain | W3C validator |