MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs1i Structured version   Visualization version   GIF version

Theorem isacs1i 16906
Description: A closure system determined by a function is a closure system and algebraic. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
isacs1i ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (ACS‘𝑋))
Distinct variable groups:   𝐹,𝑠   𝑋,𝑠
Allowed substitution hint:   𝑉(𝑠)

Proof of Theorem isacs1i
Dummy variables 𝑎 𝑡 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4032 . . . 4 {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ⊆ 𝒫 𝑋
21a1i 11 . . 3 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ⊆ 𝒫 𝑋)
3 pweq 4528 . . . . . . . 8 (𝑠 = (𝑋 𝑡) → 𝒫 𝑠 = 𝒫 (𝑋 𝑡))
43ineq1d 4163 . . . . . . 7 (𝑠 = (𝑋 𝑡) → (𝒫 𝑠 ∩ Fin) = (𝒫 (𝑋 𝑡) ∩ Fin))
54imaeq2d 5902 . . . . . 6 (𝑠 = (𝑋 𝑡) → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)))
65unieqd 4825 . . . . 5 (𝑠 = (𝑋 𝑡) → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)))
7 id 22 . . . . 5 (𝑠 = (𝑋 𝑡) → 𝑠 = (𝑋 𝑡))
86, 7sseq12d 3976 . . . 4 (𝑠 = (𝑋 𝑡) → ( (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝑋 𝑡)))
9 inss1 4180 . . . . . 6 (𝑋 𝑡) ⊆ 𝑋
10 elpw2g 5220 . . . . . 6 (𝑋𝑉 → ((𝑋 𝑡) ∈ 𝒫 𝑋 ↔ (𝑋 𝑡) ⊆ 𝑋))
119, 10mpbiri 261 . . . . 5 (𝑋𝑉 → (𝑋 𝑡) ∈ 𝒫 𝑋)
1211ad2antrr 725 . . . 4 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝑋 𝑡) ∈ 𝒫 𝑋)
13 imassrn 5913 . . . . . . . . 9 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ ran 𝐹
14 frn 6493 . . . . . . . . . 10 (𝐹:𝒫 𝑋⟶𝒫 𝑋 → ran 𝐹 ⊆ 𝒫 𝑋)
1514adantl 485 . . . . . . . . 9 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → ran 𝐹 ⊆ 𝒫 𝑋)
1613, 15sstrid 3954 . . . . . . . 8 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝒫 𝑋)
1716unissd 4821 . . . . . . 7 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝒫 𝑋)
18 unipw 5316 . . . . . . 7 𝒫 𝑋 = 𝑋
1917, 18sseqtrdi 3993 . . . . . 6 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑋)
2019adantr 484 . . . . 5 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑋)
21 inss2 4181 . . . . . . . . . . . . . 14 (𝑋 𝑡) ⊆ 𝑡
22 intss1 4864 . . . . . . . . . . . . . 14 (𝑎𝑡 𝑡𝑎)
2321, 22sstrid 3954 . . . . . . . . . . . . 13 (𝑎𝑡 → (𝑋 𝑡) ⊆ 𝑎)
2423adantl 485 . . . . . . . . . . . 12 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝑋 𝑡) ⊆ 𝑎)
2524sspwd 4527 . . . . . . . . . . 11 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → 𝒫 (𝑋 𝑡) ⊆ 𝒫 𝑎)
2625ssrind 4187 . . . . . . . . . 10 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝒫 (𝑋 𝑡) ∩ Fin) ⊆ (𝒫 𝑎 ∩ Fin))
27 imass2 5938 . . . . . . . . . 10 ((𝒫 (𝑋 𝑡) ∩ Fin) ⊆ (𝒫 𝑎 ∩ Fin) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝐹 “ (𝒫 𝑎 ∩ Fin)))
2826, 27syl 17 . . . . . . . . 9 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝐹 “ (𝒫 𝑎 ∩ Fin)))
2928unissd 4821 . . . . . . . 8 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝐹 “ (𝒫 𝑎 ∩ Fin)))
30 ssel2 3938 . . . . . . . . . 10 ((𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∧ 𝑎𝑡) → 𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠})
31 pweq 4528 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑎 → 𝒫 𝑠 = 𝒫 𝑎)
3231ineq1d 4163 . . . . . . . . . . . . . . 15 (𝑠 = 𝑎 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑎 ∩ Fin))
3332imaeq2d 5902 . . . . . . . . . . . . . 14 (𝑠 = 𝑎 → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑎 ∩ Fin)))
3433unieqd 4825 . . . . . . . . . . . . 13 (𝑠 = 𝑎 (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑎 ∩ Fin)))
35 id 22 . . . . . . . . . . . . 13 (𝑠 = 𝑎𝑠 = 𝑎)
3634, 35sseq12d 3976 . . . . . . . . . . . 12 (𝑠 = 𝑎 → ( (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠 (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎))
3736elrab 3657 . . . . . . . . . . 11 (𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑎 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎))
3837simprbi 500 . . . . . . . . . 10 (𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} → (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎)
3930, 38syl 17 . . . . . . . . 9 ((𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∧ 𝑎𝑡) → (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎)
4039adantll 713 . . . . . . . 8 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎)
4129, 40sstrd 3953 . . . . . . 7 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑎)
4241ralrimiva 3170 . . . . . 6 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → ∀𝑎𝑡 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑎)
43 ssint 4865 . . . . . 6 ( (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑡 ↔ ∀𝑎𝑡 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑎)
4442, 43sylibr 237 . . . . 5 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑡)
4520, 44ssind 4184 . . . 4 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝑋 𝑡))
468, 12, 45elrabd 3659 . . 3 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝑋 𝑡) ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠})
472, 46ismred2 16852 . 2 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (Moore‘𝑋))
48 fssxp 6507 . . . 4 (𝐹:𝒫 𝑋⟶𝒫 𝑋𝐹 ⊆ (𝒫 𝑋 × 𝒫 𝑋))
49 pwexg 5252 . . . . 5 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
5049, 49xpexd 7449 . . . 4 (𝑋𝑉 → (𝒫 𝑋 × 𝒫 𝑋) ∈ V)
51 ssexg 5200 . . . 4 ((𝐹 ⊆ (𝒫 𝑋 × 𝒫 𝑋) ∧ (𝒫 𝑋 × 𝒫 𝑋) ∈ V) → 𝐹 ∈ V)
5248, 50, 51syl2anr 599 . . 3 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → 𝐹 ∈ V)
53 simpr 488 . . . 4 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → 𝐹:𝒫 𝑋⟶𝒫 𝑋)
54 pweq 4528 . . . . . . . . . 10 (𝑠 = 𝑡 → 𝒫 𝑠 = 𝒫 𝑡)
5554ineq1d 4163 . . . . . . . . 9 (𝑠 = 𝑡 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑡 ∩ Fin))
5655imaeq2d 5902 . . . . . . . 8 (𝑠 = 𝑡 → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin)))
5756unieqd 4825 . . . . . . 7 (𝑠 = 𝑡 (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin)))
58 id 22 . . . . . . 7 (𝑠 = 𝑡𝑠 = 𝑡)
5957, 58sseq12d 3976 . . . . . 6 (𝑠 = 𝑡 → ( (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠 (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))
6059elrab3 3658 . . . . 5 (𝑡 ∈ 𝒫 𝑋 → (𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))
6160rgen 3136 . . . 4 𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)
6253, 61jctir 524 . . 3 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)))
63 feq1 6468 . . . 4 (𝑓 = 𝐹 → (𝑓:𝒫 𝑋⟶𝒫 𝑋𝐹:𝒫 𝑋⟶𝒫 𝑋))
64 imaeq1 5897 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 “ (𝒫 𝑡 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin)))
6564unieqd 4825 . . . . . . 7 (𝑓 = 𝐹 (𝑓 “ (𝒫 𝑡 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin)))
6665sseq1d 3974 . . . . . 6 (𝑓 = 𝐹 → ( (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡 (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))
6766bibi2d 346 . . . . 5 (𝑓 = 𝐹 → ((𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡) ↔ (𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)))
6867ralbidv 3185 . . . 4 (𝑓 = 𝐹 → (∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡) ↔ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)))
6963, 68anbi12d 633 . . 3 (𝑓 = 𝐹 → ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) ↔ (𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))))
7052, 62, 69spcedv 3576 . 2 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)))
71 isacs 16900 . 2 ({𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (ACS‘𝑋) ↔ ({𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))))
7247, 70, 71sylanbrc 586 1 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2115  wral 3126  {crab 3130  Vcvv 3471  cin 3909  wss 3910  𝒫 cpw 4512   cuni 4811   cint 4849   × cxp 5526  ran crn 5529  cima 5531  wf 6324  cfv 6328  Fincfn 8484  Moorecmre 16831  ACScacs 16834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-int 4850  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-mre 16835  df-acs 16838
This theorem is referenced by:  acsfn  16908
  Copyright terms: Public domain W3C validator