Step | Hyp | Ref
| Expression |
1 | | ssrab2 4013 |
. . . 4
⊢ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹
“ (𝒫 𝑠 ∩
Fin)) ⊆ 𝑠} ⊆
𝒫 𝑋 |
2 | 1 | a1i 11 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ⊆ 𝒫 𝑋) |
3 | | pweq 4549 |
. . . . . . . 8
⊢ (𝑠 = (𝑋 ∩ ∩ 𝑡) → 𝒫 𝑠 = 𝒫 (𝑋 ∩ ∩ 𝑡)) |
4 | 3 | ineq1d 4145 |
. . . . . . 7
⊢ (𝑠 = (𝑋 ∩ ∩ 𝑡) → (𝒫 𝑠 ∩ Fin) = (𝒫 (𝑋 ∩ ∩ 𝑡)
∩ Fin)) |
5 | 4 | imaeq2d 5969 |
. . . . . 6
⊢ (𝑠 = (𝑋 ∩ ∩ 𝑡) → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡) ∩ Fin))) |
6 | 5 | unieqd 4853 |
. . . . 5
⊢ (𝑠 = (𝑋 ∩ ∩ 𝑡) → ∪ (𝐹
“ (𝒫 𝑠 ∩
Fin)) = ∪ (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡) ∩ Fin))) |
7 | | id 22 |
. . . . 5
⊢ (𝑠 = (𝑋 ∩ ∩ 𝑡) → 𝑠 = (𝑋 ∩ ∩ 𝑡)) |
8 | 6, 7 | sseq12d 3954 |
. . . 4
⊢ (𝑠 = (𝑋 ∩ ∩ 𝑡) → (∪ (𝐹
“ (𝒫 𝑠 ∩
Fin)) ⊆ 𝑠 ↔
∪ (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡) ∩ Fin)) ⊆ (𝑋 ∩ ∩ 𝑡))) |
9 | | inss1 4162 |
. . . . . 6
⊢ (𝑋 ∩ ∩ 𝑡)
⊆ 𝑋 |
10 | | elpw2g 5268 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → ((𝑋 ∩ ∩ 𝑡) ∈ 𝒫 𝑋 ↔ (𝑋 ∩ ∩ 𝑡) ⊆ 𝑋)) |
11 | 9, 10 | mpbiri 257 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → (𝑋 ∩ ∩ 𝑡) ∈ 𝒫 𝑋) |
12 | 11 | ad2antrr 723 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝑋 ∩ ∩ 𝑡) ∈ 𝒫 𝑋) |
13 | | imassrn 5980 |
. . . . . . . . 9
⊢ (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡)
∩ Fin)) ⊆ ran 𝐹 |
14 | | frn 6607 |
. . . . . . . . . 10
⊢ (𝐹:𝒫 𝑋⟶𝒫 𝑋 → ran 𝐹 ⊆ 𝒫 𝑋) |
15 | 14 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → ran 𝐹 ⊆ 𝒫 𝑋) |
16 | 13, 15 | sstrid 3932 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡) ∩ Fin)) ⊆ 𝒫
𝑋) |
17 | 16 | unissd 4849 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → ∪ (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡)
∩ Fin)) ⊆ ∪ 𝒫 𝑋) |
18 | | unipw 5366 |
. . . . . . 7
⊢ ∪ 𝒫 𝑋 = 𝑋 |
19 | 17, 18 | sseqtrdi 3971 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → ∪ (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡)
∩ Fin)) ⊆ 𝑋) |
20 | 19 | adantr 481 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → ∪ (𝐹
“ (𝒫 (𝑋 ∩
∩ 𝑡) ∩ Fin)) ⊆ 𝑋) |
21 | | inss2 4163 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∩ ∩ 𝑡)
⊆ ∩ 𝑡 |
22 | | intss1 4894 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ 𝑡 → ∩ 𝑡 ⊆ 𝑎) |
23 | 21, 22 | sstrid 3932 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ 𝑡 → (𝑋 ∩ ∩ 𝑡) ⊆ 𝑎) |
24 | 23 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎 ∈ 𝑡) → (𝑋 ∩ ∩ 𝑡) ⊆ 𝑎) |
25 | 24 | sspwd 4548 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎 ∈ 𝑡) → 𝒫 (𝑋 ∩ ∩ 𝑡) ⊆ 𝒫 𝑎) |
26 | 25 | ssrind 4169 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎 ∈ 𝑡) → (𝒫 (𝑋 ∩ ∩ 𝑡) ∩ Fin) ⊆ (𝒫
𝑎 ∩
Fin)) |
27 | | imass2 6010 |
. . . . . . . . . 10
⊢
((𝒫 (𝑋 ∩
∩ 𝑡) ∩ Fin) ⊆ (𝒫 𝑎 ∩ Fin) → (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡)
∩ Fin)) ⊆ (𝐹
“ (𝒫 𝑎 ∩
Fin))) |
28 | 26, 27 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎 ∈ 𝑡) → (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡) ∩ Fin)) ⊆ (𝐹 “ (𝒫 𝑎 ∩ Fin))) |
29 | 28 | unissd 4849 |
. . . . . . . 8
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎 ∈ 𝑡) → ∪ (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡)
∩ Fin)) ⊆ ∪ (𝐹 “ (𝒫 𝑎 ∩ Fin))) |
30 | | ssel2 3916 |
. . . . . . . . . 10
⊢ ((𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∧ 𝑎 ∈ 𝑡) → 𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) |
31 | | pweq 4549 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = 𝑎 → 𝒫 𝑠 = 𝒫 𝑎) |
32 | 31 | ineq1d 4145 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = 𝑎 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑎 ∩ Fin)) |
33 | 32 | imaeq2d 5969 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑎 → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑎 ∩ Fin))) |
34 | 33 | unieqd 4853 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑎 → ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) = ∪ (𝐹
“ (𝒫 𝑎 ∩
Fin))) |
35 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑎 → 𝑠 = 𝑎) |
36 | 34, 35 | sseq12d 3954 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑎 → (∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠 ↔ ∪ (𝐹
“ (𝒫 𝑎 ∩
Fin)) ⊆ 𝑎)) |
37 | 36 | elrab 3624 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑎 ∈ 𝒫 𝑋 ∧ ∪ (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎)) |
38 | 37 | simprbi 497 |
. . . . . . . . . 10
⊢ (𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} → ∪ (𝐹
“ (𝒫 𝑎 ∩
Fin)) ⊆ 𝑎) |
39 | 30, 38 | syl 17 |
. . . . . . . . 9
⊢ ((𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∧ 𝑎 ∈ 𝑡) → ∪ (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎) |
40 | 39 | adantll 711 |
. . . . . . . 8
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎 ∈ 𝑡) → ∪ (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎) |
41 | 29, 40 | sstrd 3931 |
. . . . . . 7
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎 ∈ 𝑡) → ∪ (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡)
∩ Fin)) ⊆ 𝑎) |
42 | 41 | ralrimiva 3103 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → ∀𝑎 ∈ 𝑡 ∪ (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡)
∩ Fin)) ⊆ 𝑎) |
43 | | ssint 4895 |
. . . . . 6
⊢ (∪ (𝐹
“ (𝒫 (𝑋 ∩
∩ 𝑡) ∩ Fin)) ⊆ ∩ 𝑡
↔ ∀𝑎 ∈
𝑡 ∪ (𝐹
“ (𝒫 (𝑋 ∩
∩ 𝑡) ∩ Fin)) ⊆ 𝑎) |
44 | 42, 43 | sylibr 233 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → ∪ (𝐹
“ (𝒫 (𝑋 ∩
∩ 𝑡) ∩ Fin)) ⊆ ∩ 𝑡) |
45 | 20, 44 | ssind 4166 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → ∪ (𝐹
“ (𝒫 (𝑋 ∩
∩ 𝑡) ∩ Fin)) ⊆ (𝑋 ∩ ∩ 𝑡)) |
46 | 8, 12, 45 | elrabd 3626 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝑋 ∩ ∩ 𝑡) ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) |
47 | 2, 46 | ismred2 17312 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (Moore‘𝑋)) |
48 | | fssxp 6628 |
. . . 4
⊢ (𝐹:𝒫 𝑋⟶𝒫 𝑋 → 𝐹 ⊆ (𝒫 𝑋 × 𝒫 𝑋)) |
49 | | pwexg 5301 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ V) |
50 | 49, 49 | xpexd 7601 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (𝒫 𝑋 × 𝒫 𝑋) ∈ V) |
51 | | ssexg 5247 |
. . . 4
⊢ ((𝐹 ⊆ (𝒫 𝑋 × 𝒫 𝑋) ∧ (𝒫 𝑋 × 𝒫 𝑋) ∈ V) → 𝐹 ∈ V) |
52 | 48, 50, 51 | syl2anr 597 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → 𝐹 ∈ V) |
53 | | simpr 485 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → 𝐹:𝒫 𝑋⟶𝒫 𝑋) |
54 | | pweq 4549 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑡 → 𝒫 𝑠 = 𝒫 𝑡) |
55 | 54 | ineq1d 4145 |
. . . . . . . . 9
⊢ (𝑠 = 𝑡 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑡 ∩ Fin)) |
56 | 55 | imaeq2d 5969 |
. . . . . . . 8
⊢ (𝑠 = 𝑡 → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin))) |
57 | 56 | unieqd 4853 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) = ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin))) |
58 | | id 22 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → 𝑠 = 𝑡) |
59 | 57, 58 | sseq12d 3954 |
. . . . . 6
⊢ (𝑠 = 𝑡 → (∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠 ↔ ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡)) |
60 | 59 | elrab3 3625 |
. . . . 5
⊢ (𝑡 ∈ 𝒫 𝑋 → (𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡)) |
61 | 60 | rgen 3074 |
. . . 4
⊢
∀𝑡 ∈
𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡) |
62 | 53, 61 | jctir 521 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡))) |
63 | | feq1 6581 |
. . . 4
⊢ (𝑓 = 𝐹 → (𝑓:𝒫 𝑋⟶𝒫 𝑋 ↔ 𝐹:𝒫 𝑋⟶𝒫 𝑋)) |
64 | | imaeq1 5964 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓 “ (𝒫 𝑡 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin))) |
65 | 64 | unieqd 4853 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ∪ (𝑓 “ (𝒫 𝑡 ∩ Fin)) = ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin))) |
66 | 65 | sseq1d 3952 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (∪ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡 ↔ ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡)) |
67 | 66 | bibi2d 343 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝑓
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡) ↔
(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹
“ (𝒫 𝑠 ∩
Fin)) ⊆ 𝑠} ↔
∪ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))) |
68 | 67 | ralbidv 3112 |
. . . 4
⊢ (𝑓 = 𝐹 → (∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝑓
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡) ↔
∀𝑡 ∈ 𝒫
𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡))) |
69 | 63, 68 | anbi12d 631 |
. . 3
⊢ (𝑓 = 𝐹 → ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝑓
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡)) ↔
(𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡)))) |
70 | 52, 62, 69 | spcedv 3537 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝑓
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡))) |
71 | | isacs 17360 |
. 2
⊢ ({𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹
“ (𝒫 𝑠 ∩
Fin)) ⊆ 𝑠} ∈
(ACS‘𝑋) ↔
({𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹
“ (𝒫 𝑠 ∩
Fin)) ⊆ 𝑠} ∈
(Moore‘𝑋) ∧
∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝑓
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡)))) |
72 | 47, 70, 71 | sylanbrc 583 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (ACS‘𝑋)) |