MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs1i Structured version   Visualization version   GIF version

Theorem isacs1i 17563
Description: A closure system determined by a function is a closure system and algebraic. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
isacs1i ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (ACS‘𝑋))
Distinct variable groups:   𝐹,𝑠   𝑋,𝑠
Allowed substitution hint:   𝑉(𝑠)

Proof of Theorem isacs1i
Dummy variables 𝑎 𝑡 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4030 . . . 4 {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ⊆ 𝒫 𝑋
21a1i 11 . . 3 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ⊆ 𝒫 𝑋)
3 pweq 4564 . . . . . . . 8 (𝑠 = (𝑋 𝑡) → 𝒫 𝑠 = 𝒫 (𝑋 𝑡))
43ineq1d 4169 . . . . . . 7 (𝑠 = (𝑋 𝑡) → (𝒫 𝑠 ∩ Fin) = (𝒫 (𝑋 𝑡) ∩ Fin))
54imaeq2d 6009 . . . . . 6 (𝑠 = (𝑋 𝑡) → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)))
65unieqd 4872 . . . . 5 (𝑠 = (𝑋 𝑡) → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)))
7 id 22 . . . . 5 (𝑠 = (𝑋 𝑡) → 𝑠 = (𝑋 𝑡))
86, 7sseq12d 3968 . . . 4 (𝑠 = (𝑋 𝑡) → ( (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝑋 𝑡)))
9 inss1 4187 . . . . . 6 (𝑋 𝑡) ⊆ 𝑋
10 elpw2g 5271 . . . . . 6 (𝑋𝑉 → ((𝑋 𝑡) ∈ 𝒫 𝑋 ↔ (𝑋 𝑡) ⊆ 𝑋))
119, 10mpbiri 258 . . . . 5 (𝑋𝑉 → (𝑋 𝑡) ∈ 𝒫 𝑋)
1211ad2antrr 726 . . . 4 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝑋 𝑡) ∈ 𝒫 𝑋)
13 imassrn 6020 . . . . . . . . 9 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ ran 𝐹
14 frn 6658 . . . . . . . . . 10 (𝐹:𝒫 𝑋⟶𝒫 𝑋 → ran 𝐹 ⊆ 𝒫 𝑋)
1514adantl 481 . . . . . . . . 9 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → ran 𝐹 ⊆ 𝒫 𝑋)
1613, 15sstrid 3946 . . . . . . . 8 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝒫 𝑋)
1716unissd 4869 . . . . . . 7 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝒫 𝑋)
18 unipw 5391 . . . . . . 7 𝒫 𝑋 = 𝑋
1917, 18sseqtrdi 3975 . . . . . 6 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑋)
2019adantr 480 . . . . 5 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑋)
21 inss2 4188 . . . . . . . . . . . . . 14 (𝑋 𝑡) ⊆ 𝑡
22 intss1 4913 . . . . . . . . . . . . . 14 (𝑎𝑡 𝑡𝑎)
2321, 22sstrid 3946 . . . . . . . . . . . . 13 (𝑎𝑡 → (𝑋 𝑡) ⊆ 𝑎)
2423adantl 481 . . . . . . . . . . . 12 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝑋 𝑡) ⊆ 𝑎)
2524sspwd 4563 . . . . . . . . . . 11 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → 𝒫 (𝑋 𝑡) ⊆ 𝒫 𝑎)
2625ssrind 4194 . . . . . . . . . 10 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝒫 (𝑋 𝑡) ∩ Fin) ⊆ (𝒫 𝑎 ∩ Fin))
27 imass2 6051 . . . . . . . . . 10 ((𝒫 (𝑋 𝑡) ∩ Fin) ⊆ (𝒫 𝑎 ∩ Fin) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝐹 “ (𝒫 𝑎 ∩ Fin)))
2826, 27syl 17 . . . . . . . . 9 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝐹 “ (𝒫 𝑎 ∩ Fin)))
2928unissd 4869 . . . . . . . 8 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝐹 “ (𝒫 𝑎 ∩ Fin)))
30 ssel2 3929 . . . . . . . . . 10 ((𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∧ 𝑎𝑡) → 𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠})
31 pweq 4564 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑎 → 𝒫 𝑠 = 𝒫 𝑎)
3231ineq1d 4169 . . . . . . . . . . . . . . 15 (𝑠 = 𝑎 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑎 ∩ Fin))
3332imaeq2d 6009 . . . . . . . . . . . . . 14 (𝑠 = 𝑎 → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑎 ∩ Fin)))
3433unieqd 4872 . . . . . . . . . . . . 13 (𝑠 = 𝑎 (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑎 ∩ Fin)))
35 id 22 . . . . . . . . . . . . 13 (𝑠 = 𝑎𝑠 = 𝑎)
3634, 35sseq12d 3968 . . . . . . . . . . . 12 (𝑠 = 𝑎 → ( (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠 (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎))
3736elrab 3647 . . . . . . . . . . 11 (𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑎 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎))
3837simprbi 496 . . . . . . . . . 10 (𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} → (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎)
3930, 38syl 17 . . . . . . . . 9 ((𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∧ 𝑎𝑡) → (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎)
4039adantll 714 . . . . . . . 8 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎)
4129, 40sstrd 3945 . . . . . . 7 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑎)
4241ralrimiva 3124 . . . . . 6 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → ∀𝑎𝑡 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑎)
43 ssint 4914 . . . . . 6 ( (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑡 ↔ ∀𝑎𝑡 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑎)
4442, 43sylibr 234 . . . . 5 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑡)
4520, 44ssind 4191 . . . 4 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝑋 𝑡))
468, 12, 45elrabd 3649 . . 3 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝑋 𝑡) ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠})
472, 46ismred2 17505 . 2 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (Moore‘𝑋))
48 fssxp 6678 . . . 4 (𝐹:𝒫 𝑋⟶𝒫 𝑋𝐹 ⊆ (𝒫 𝑋 × 𝒫 𝑋))
49 pwexg 5316 . . . . 5 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
5049, 49xpexd 7684 . . . 4 (𝑋𝑉 → (𝒫 𝑋 × 𝒫 𝑋) ∈ V)
51 ssexg 5261 . . . 4 ((𝐹 ⊆ (𝒫 𝑋 × 𝒫 𝑋) ∧ (𝒫 𝑋 × 𝒫 𝑋) ∈ V) → 𝐹 ∈ V)
5248, 50, 51syl2anr 597 . . 3 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → 𝐹 ∈ V)
53 simpr 484 . . . 4 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → 𝐹:𝒫 𝑋⟶𝒫 𝑋)
54 pweq 4564 . . . . . . . . . 10 (𝑠 = 𝑡 → 𝒫 𝑠 = 𝒫 𝑡)
5554ineq1d 4169 . . . . . . . . 9 (𝑠 = 𝑡 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑡 ∩ Fin))
5655imaeq2d 6009 . . . . . . . 8 (𝑠 = 𝑡 → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin)))
5756unieqd 4872 . . . . . . 7 (𝑠 = 𝑡 (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin)))
58 id 22 . . . . . . 7 (𝑠 = 𝑡𝑠 = 𝑡)
5957, 58sseq12d 3968 . . . . . 6 (𝑠 = 𝑡 → ( (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠 (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))
6059elrab3 3648 . . . . 5 (𝑡 ∈ 𝒫 𝑋 → (𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))
6160rgen 3049 . . . 4 𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)
6253, 61jctir 520 . . 3 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)))
63 feq1 6629 . . . 4 (𝑓 = 𝐹 → (𝑓:𝒫 𝑋⟶𝒫 𝑋𝐹:𝒫 𝑋⟶𝒫 𝑋))
64 imaeq1 6004 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 “ (𝒫 𝑡 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin)))
6564unieqd 4872 . . . . . . 7 (𝑓 = 𝐹 (𝑓 “ (𝒫 𝑡 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin)))
6665sseq1d 3966 . . . . . 6 (𝑓 = 𝐹 → ( (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡 (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))
6766bibi2d 342 . . . . 5 (𝑓 = 𝐹 → ((𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡) ↔ (𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)))
6867ralbidv 3155 . . . 4 (𝑓 = 𝐹 → (∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡) ↔ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)))
6963, 68anbi12d 632 . . 3 (𝑓 = 𝐹 → ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) ↔ (𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))))
7052, 62, 69spcedv 3553 . 2 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)))
71 isacs 17557 . 2 ({𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (ACS‘𝑋) ↔ ({𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))))
7247, 70, 71sylanbrc 583 1 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  cin 3901  wss 3902  𝒫 cpw 4550   cuni 4859   cint 4897   × cxp 5614  ran crn 5617  cima 5619  wf 6477  cfv 6481  Fincfn 8869  Moorecmre 17484  ACScacs 17487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-mre 17488  df-acs 17491
This theorem is referenced by:  acsfn  17565
  Copyright terms: Public domain W3C validator