| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltleft | Structured version Visualization version GIF version | ||
| Description: A surreal is greater than its left options. Theorem 0(ii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| ssltleft | ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6891 | . 2 ⊢ (𝐴 ∈ No → ( L ‘𝐴) ∈ V) | |
| 2 | snex 5406 | . . 3 ⊢ {𝐴} ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ∈ V) |
| 4 | leftf 27829 | . . . 4 ⊢ L : No ⟶𝒫 No | |
| 5 | 4 | ffvelcdmi 7073 | . . 3 ⊢ (𝐴 ∈ No → ( L ‘𝐴) ∈ 𝒫 No ) |
| 6 | 5 | elpwid 4584 | . 2 ⊢ (𝐴 ∈ No → ( L ‘𝐴) ⊆ No ) |
| 7 | snssi 4784 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ⊆ No ) | |
| 8 | velsn 4617 | . . . 4 ⊢ (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴) | |
| 9 | leftval 27823 | . . . . . . . . . 10 ⊢ ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} | |
| 10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝐴 ∈ No → ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴}) |
| 11 | 10 | eleq2d 2820 | . . . . . . . 8 ⊢ (𝐴 ∈ No → (𝑥 ∈ ( L ‘𝐴) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴})) |
| 12 | rabid 3437 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} ↔ (𝑥 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝑥 <s 𝐴)) | |
| 13 | 11, 12 | bitrdi 287 | . . . . . . 7 ⊢ (𝐴 ∈ No → (𝑥 ∈ ( L ‘𝐴) ↔ (𝑥 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝑥 <s 𝐴))) |
| 14 | 13 | simplbda 499 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝑥 ∈ ( L ‘𝐴)) → 𝑥 <s 𝐴) |
| 15 | breq2 5123 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 <s 𝑦 ↔ 𝑥 <s 𝐴)) | |
| 16 | 14, 15 | imbitrrid 246 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝐴 ∈ No ∧ 𝑥 ∈ ( L ‘𝐴)) → 𝑥 <s 𝑦)) |
| 17 | 16 | expd 415 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝐴 ∈ No → (𝑥 ∈ ( L ‘𝐴) → 𝑥 <s 𝑦))) |
| 18 | 8, 17 | sylbi 217 | . . 3 ⊢ (𝑦 ∈ {𝐴} → (𝐴 ∈ No → (𝑥 ∈ ( L ‘𝐴) → 𝑥 <s 𝑦))) |
| 19 | 18 | 3imp231 1112 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑥 ∈ ( L ‘𝐴) ∧ 𝑦 ∈ {𝐴}) → 𝑥 <s 𝑦) |
| 20 | 1, 3, 6, 7, 19 | ssltd 27755 | 1 ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 𝒫 cpw 4575 {csn 4601 class class class wbr 5119 ‘cfv 6531 No csur 27603 <s cslt 27604 bday cbday 27605 <<s csslt 27744 O cold 27803 L cleft 27805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-1o 8480 df-2o 8481 df-no 27606 df-slt 27607 df-bday 27608 df-sslt 27745 df-scut 27747 df-made 27807 df-old 27808 df-left 27810 |
| This theorem is referenced by: lltropt 27836 madebdaylemlrcut 27862 mulsproplem5 28075 mulsproplem6 28076 mulsproplem7 28077 mulsproplem8 28078 mulsuniflem 28104 |
| Copyright terms: Public domain | W3C validator |