| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltleft | Structured version Visualization version GIF version | ||
| Description: A surreal is greater than its left options. Theorem 0(ii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| ssltleft | ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6837 | . 2 ⊢ (𝐴 ∈ No → ( L ‘𝐴) ∈ V) | |
| 2 | snex 5374 | . . 3 ⊢ {𝐴} ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ∈ V) |
| 4 | leftf 27808 | . . . 4 ⊢ L : No ⟶𝒫 No | |
| 5 | 4 | ffvelcdmi 7016 | . . 3 ⊢ (𝐴 ∈ No → ( L ‘𝐴) ∈ 𝒫 No ) |
| 6 | 5 | elpwid 4559 | . 2 ⊢ (𝐴 ∈ No → ( L ‘𝐴) ⊆ No ) |
| 7 | snssi 4760 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ⊆ No ) | |
| 8 | velsn 4592 | . . . 4 ⊢ (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴) | |
| 9 | leftval 27802 | . . . . . . . . . 10 ⊢ ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} | |
| 10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝐴 ∈ No → ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴}) |
| 11 | 10 | eleq2d 2817 | . . . . . . . 8 ⊢ (𝐴 ∈ No → (𝑥 ∈ ( L ‘𝐴) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴})) |
| 12 | rabid 3416 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} ↔ (𝑥 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝑥 <s 𝐴)) | |
| 13 | 11, 12 | bitrdi 287 | . . . . . . 7 ⊢ (𝐴 ∈ No → (𝑥 ∈ ( L ‘𝐴) ↔ (𝑥 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝑥 <s 𝐴))) |
| 14 | 13 | simplbda 499 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝑥 ∈ ( L ‘𝐴)) → 𝑥 <s 𝐴) |
| 15 | breq2 5095 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 <s 𝑦 ↔ 𝑥 <s 𝐴)) | |
| 16 | 14, 15 | imbitrrid 246 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝐴 ∈ No ∧ 𝑥 ∈ ( L ‘𝐴)) → 𝑥 <s 𝑦)) |
| 17 | 16 | expd 415 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝐴 ∈ No → (𝑥 ∈ ( L ‘𝐴) → 𝑥 <s 𝑦))) |
| 18 | 8, 17 | sylbi 217 | . . 3 ⊢ (𝑦 ∈ {𝐴} → (𝐴 ∈ No → (𝑥 ∈ ( L ‘𝐴) → 𝑥 <s 𝑦))) |
| 19 | 18 | 3imp231 1112 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑥 ∈ ( L ‘𝐴) ∧ 𝑦 ∈ {𝐴}) → 𝑥 <s 𝑦) |
| 20 | 1, 3, 6, 7, 19 | ssltd 27729 | 1 ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 𝒫 cpw 4550 {csn 4576 class class class wbr 5091 ‘cfv 6481 No csur 27576 <s cslt 27577 bday cbday 27578 <<s csslt 27718 O cold 27782 L cleft 27784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-no 27579 df-slt 27580 df-bday 27581 df-sslt 27719 df-scut 27721 df-made 27786 df-old 27787 df-left 27789 |
| This theorem is referenced by: lltropt 27815 madebdaylemlrcut 27842 mulsproplem5 28057 mulsproplem6 28058 mulsproplem7 28059 mulsproplem8 28060 mulsuniflem 28086 |
| Copyright terms: Public domain | W3C validator |