![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssltleft | Structured version Visualization version GIF version |
Description: A surreal is greater than its left options. Theorem 0(ii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
ssltleft | β’ (π΄ β No β ( L βπ΄) <<s {π΄}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6900 | . 2 β’ (π΄ β No β ( L βπ΄) β V) | |
2 | snex 5424 | . . 3 β’ {π΄} β V | |
3 | 2 | a1i 11 | . 2 β’ (π΄ β No β {π΄} β V) |
4 | leftf 27747 | . . . 4 β’ L : No βΆπ« No | |
5 | 4 | ffvelcdmi 7079 | . . 3 β’ (π΄ β No β ( L βπ΄) β π« No ) |
6 | 5 | elpwid 4606 | . 2 β’ (π΄ β No β ( L βπ΄) β No ) |
7 | snssi 4806 | . 2 β’ (π΄ β No β {π΄} β No ) | |
8 | velsn 4639 | . . . 4 β’ (π¦ β {π΄} β π¦ = π΄) | |
9 | leftval 27745 | . . . . . . . . . 10 β’ ( L βπ΄) = {π₯ β ( O β( bday βπ΄)) β£ π₯ <s π΄} | |
10 | 9 | a1i 11 | . . . . . . . . 9 β’ (π΄ β No β ( L βπ΄) = {π₯ β ( O β( bday βπ΄)) β£ π₯ <s π΄}) |
11 | 10 | eleq2d 2813 | . . . . . . . 8 β’ (π΄ β No β (π₯ β ( L βπ΄) β π₯ β {π₯ β ( O β( bday βπ΄)) β£ π₯ <s π΄})) |
12 | rabid 3446 | . . . . . . . 8 β’ (π₯ β {π₯ β ( O β( bday βπ΄)) β£ π₯ <s π΄} β (π₯ β ( O β( bday βπ΄)) β§ π₯ <s π΄)) | |
13 | 11, 12 | bitrdi 287 | . . . . . . 7 β’ (π΄ β No β (π₯ β ( L βπ΄) β (π₯ β ( O β( bday βπ΄)) β§ π₯ <s π΄))) |
14 | 13 | simplbda 499 | . . . . . 6 β’ ((π΄ β No β§ π₯ β ( L βπ΄)) β π₯ <s π΄) |
15 | breq2 5145 | . . . . . 6 β’ (π¦ = π΄ β (π₯ <s π¦ β π₯ <s π΄)) | |
16 | 14, 15 | imbitrrid 245 | . . . . 5 β’ (π¦ = π΄ β ((π΄ β No β§ π₯ β ( L βπ΄)) β π₯ <s π¦)) |
17 | 16 | expd 415 | . . . 4 β’ (π¦ = π΄ β (π΄ β No β (π₯ β ( L βπ΄) β π₯ <s π¦))) |
18 | 8, 17 | sylbi 216 | . . 3 β’ (π¦ β {π΄} β (π΄ β No β (π₯ β ( L βπ΄) β π₯ <s π¦))) |
19 | 18 | 3imp231 1110 | . 2 β’ ((π΄ β No β§ π₯ β ( L βπ΄) β§ π¦ β {π΄}) β π₯ <s π¦) |
20 | 1, 3, 6, 7, 19 | ssltd 27679 | 1 β’ (π΄ β No β ( L βπ΄) <<s {π΄}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 {crab 3426 Vcvv 3468 π« cpw 4597 {csn 4623 class class class wbr 5141 βcfv 6537 No csur 27528 <s cslt 27529 bday cbday 27530 <<s csslt 27668 O cold 27725 L cleft 27727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-1o 8467 df-2o 8468 df-no 27531 df-slt 27532 df-bday 27533 df-sslt 27669 df-scut 27671 df-made 27729 df-old 27730 df-left 27732 |
This theorem is referenced by: lltropt 27754 madebdaylemlrcut 27780 mulsproplem5 27975 mulsproplem6 27976 mulsproplem7 27977 mulsproplem8 27978 mulsuniflem 28004 |
Copyright terms: Public domain | W3C validator |