MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltleft Structured version   Visualization version   GIF version

Theorem ssltleft 27909
Description: A surreal is greater than its left options. Theorem 0(ii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
ssltleft (𝐴 No → ( L ‘𝐴) <<s {𝐴})

Proof of Theorem ssltleft
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6921 . 2 (𝐴 No → ( L ‘𝐴) ∈ V)
2 snex 5436 . . 3 {𝐴} ∈ V
32a1i 11 . 2 (𝐴 No → {𝐴} ∈ V)
4 leftf 27904 . . . 4 L : No ⟶𝒫 No
54ffvelcdmi 7103 . . 3 (𝐴 No → ( L ‘𝐴) ∈ 𝒫 No )
65elpwid 4609 . 2 (𝐴 No → ( L ‘𝐴) ⊆ No )
7 snssi 4808 . 2 (𝐴 No → {𝐴} ⊆ No )
8 velsn 4642 . . . 4 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
9 leftval 27902 . . . . . . . . . 10 ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴}
109a1i 11 . . . . . . . . 9 (𝐴 No → ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴})
1110eleq2d 2827 . . . . . . . 8 (𝐴 No → (𝑥 ∈ ( L ‘𝐴) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴}))
12 rabid 3458 . . . . . . . 8 (𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴} ↔ (𝑥 ∈ ( O ‘( bday 𝐴)) ∧ 𝑥 <s 𝐴))
1311, 12bitrdi 287 . . . . . . 7 (𝐴 No → (𝑥 ∈ ( L ‘𝐴) ↔ (𝑥 ∈ ( O ‘( bday 𝐴)) ∧ 𝑥 <s 𝐴)))
1413simplbda 499 . . . . . 6 ((𝐴 No 𝑥 ∈ ( L ‘𝐴)) → 𝑥 <s 𝐴)
15 breq2 5147 . . . . . 6 (𝑦 = 𝐴 → (𝑥 <s 𝑦𝑥 <s 𝐴))
1614, 15imbitrrid 246 . . . . 5 (𝑦 = 𝐴 → ((𝐴 No 𝑥 ∈ ( L ‘𝐴)) → 𝑥 <s 𝑦))
1716expd 415 . . . 4 (𝑦 = 𝐴 → (𝐴 No → (𝑥 ∈ ( L ‘𝐴) → 𝑥 <s 𝑦)))
188, 17sylbi 217 . . 3 (𝑦 ∈ {𝐴} → (𝐴 No → (𝑥 ∈ ( L ‘𝐴) → 𝑥 <s 𝑦)))
19183imp231 1113 . 2 ((𝐴 No 𝑥 ∈ ( L ‘𝐴) ∧ 𝑦 ∈ {𝐴}) → 𝑥 <s 𝑦)
201, 3, 6, 7, 19ssltd 27836 1 (𝐴 No → ( L ‘𝐴) <<s {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  𝒫 cpw 4600  {csn 4626   class class class wbr 5143  cfv 6561   No csur 27684   <s cslt 27685   bday cbday 27686   <<s csslt 27825   O cold 27882   L cleft 27884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-1o 8506  df-2o 8507  df-no 27687  df-slt 27688  df-bday 27689  df-sslt 27826  df-scut 27828  df-made 27886  df-old 27887  df-left 27889
This theorem is referenced by:  lltropt  27911  madebdaylemlrcut  27937  mulsproplem5  28146  mulsproplem6  28147  mulsproplem7  28148  mulsproplem8  28149  mulsuniflem  28175
  Copyright terms: Public domain W3C validator