![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssltleft | Structured version Visualization version GIF version |
Description: A surreal is greater than its left options. Theorem 0(ii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
ssltleft | β’ (π΄ β No β ( L βπ΄) <<s {π΄}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6905 | . 2 β’ (π΄ β No β ( L βπ΄) β V) | |
2 | snex 5425 | . . 3 β’ {π΄} β V | |
3 | 2 | a1i 11 | . 2 β’ (π΄ β No β {π΄} β V) |
4 | leftf 27808 | . . . 4 β’ L : No βΆπ« No | |
5 | 4 | ffvelcdmi 7086 | . . 3 β’ (π΄ β No β ( L βπ΄) β π« No ) |
6 | 5 | elpwid 4605 | . 2 β’ (π΄ β No β ( L βπ΄) β No ) |
7 | snssi 4805 | . 2 β’ (π΄ β No β {π΄} β No ) | |
8 | velsn 4638 | . . . 4 β’ (π¦ β {π΄} β π¦ = π΄) | |
9 | leftval 27806 | . . . . . . . . . 10 β’ ( L βπ΄) = {π₯ β ( O β( bday βπ΄)) β£ π₯ <s π΄} | |
10 | 9 | a1i 11 | . . . . . . . . 9 β’ (π΄ β No β ( L βπ΄) = {π₯ β ( O β( bday βπ΄)) β£ π₯ <s π΄}) |
11 | 10 | eleq2d 2811 | . . . . . . . 8 β’ (π΄ β No β (π₯ β ( L βπ΄) β π₯ β {π₯ β ( O β( bday βπ΄)) β£ π₯ <s π΄})) |
12 | rabid 3440 | . . . . . . . 8 β’ (π₯ β {π₯ β ( O β( bday βπ΄)) β£ π₯ <s π΄} β (π₯ β ( O β( bday βπ΄)) β§ π₯ <s π΄)) | |
13 | 11, 12 | bitrdi 286 | . . . . . . 7 β’ (π΄ β No β (π₯ β ( L βπ΄) β (π₯ β ( O β( bday βπ΄)) β§ π₯ <s π΄))) |
14 | 13 | simplbda 498 | . . . . . 6 β’ ((π΄ β No β§ π₯ β ( L βπ΄)) β π₯ <s π΄) |
15 | breq2 5145 | . . . . . 6 β’ (π¦ = π΄ β (π₯ <s π¦ β π₯ <s π΄)) | |
16 | 14, 15 | imbitrrid 245 | . . . . 5 β’ (π¦ = π΄ β ((π΄ β No β§ π₯ β ( L βπ΄)) β π₯ <s π¦)) |
17 | 16 | expd 414 | . . . 4 β’ (π¦ = π΄ β (π΄ β No β (π₯ β ( L βπ΄) β π₯ <s π¦))) |
18 | 8, 17 | sylbi 216 | . . 3 β’ (π¦ β {π΄} β (π΄ β No β (π₯ β ( L βπ΄) β π₯ <s π¦))) |
19 | 18 | 3imp231 1110 | . 2 β’ ((π΄ β No β§ π₯ β ( L βπ΄) β§ π¦ β {π΄}) β π₯ <s π¦) |
20 | 1, 3, 6, 7, 19 | ssltd 27740 | 1 β’ (π΄ β No β ( L βπ΄) <<s {π΄}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 {crab 3419 Vcvv 3463 π« cpw 4596 {csn 4622 class class class wbr 5141 βcfv 6541 No csur 27589 <s cslt 27590 bday cbday 27591 <<s csslt 27729 O cold 27786 L cleft 27788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-1o 8483 df-2o 8484 df-no 27592 df-slt 27593 df-bday 27594 df-sslt 27730 df-scut 27732 df-made 27790 df-old 27791 df-left 27793 |
This theorem is referenced by: lltropt 27815 madebdaylemlrcut 27841 mulsproplem5 28036 mulsproplem6 28037 mulsproplem7 28038 mulsproplem8 28039 mulsuniflem 28065 |
Copyright terms: Public domain | W3C validator |