| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltleft | Structured version Visualization version GIF version | ||
| Description: A surreal is greater than its left options. Theorem 0(ii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| ssltleft | ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6873 | . 2 ⊢ (𝐴 ∈ No → ( L ‘𝐴) ∈ V) | |
| 2 | snex 5391 | . . 3 ⊢ {𝐴} ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ∈ V) |
| 4 | leftf 27777 | . . . 4 ⊢ L : No ⟶𝒫 No | |
| 5 | 4 | ffvelcdmi 7055 | . . 3 ⊢ (𝐴 ∈ No → ( L ‘𝐴) ∈ 𝒫 No ) |
| 6 | 5 | elpwid 4572 | . 2 ⊢ (𝐴 ∈ No → ( L ‘𝐴) ⊆ No ) |
| 7 | snssi 4772 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ⊆ No ) | |
| 8 | velsn 4605 | . . . 4 ⊢ (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴) | |
| 9 | leftval 27771 | . . . . . . . . . 10 ⊢ ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} | |
| 10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝐴 ∈ No → ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴}) |
| 11 | 10 | eleq2d 2814 | . . . . . . . 8 ⊢ (𝐴 ∈ No → (𝑥 ∈ ( L ‘𝐴) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴})) |
| 12 | rabid 3427 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} ↔ (𝑥 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝑥 <s 𝐴)) | |
| 13 | 11, 12 | bitrdi 287 | . . . . . . 7 ⊢ (𝐴 ∈ No → (𝑥 ∈ ( L ‘𝐴) ↔ (𝑥 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝑥 <s 𝐴))) |
| 14 | 13 | simplbda 499 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝑥 ∈ ( L ‘𝐴)) → 𝑥 <s 𝐴) |
| 15 | breq2 5111 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 <s 𝑦 ↔ 𝑥 <s 𝐴)) | |
| 16 | 14, 15 | imbitrrid 246 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝐴 ∈ No ∧ 𝑥 ∈ ( L ‘𝐴)) → 𝑥 <s 𝑦)) |
| 17 | 16 | expd 415 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝐴 ∈ No → (𝑥 ∈ ( L ‘𝐴) → 𝑥 <s 𝑦))) |
| 18 | 8, 17 | sylbi 217 | . . 3 ⊢ (𝑦 ∈ {𝐴} → (𝐴 ∈ No → (𝑥 ∈ ( L ‘𝐴) → 𝑥 <s 𝑦))) |
| 19 | 18 | 3imp231 1112 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑥 ∈ ( L ‘𝐴) ∧ 𝑦 ∈ {𝐴}) → 𝑥 <s 𝑦) |
| 20 | 1, 3, 6, 7, 19 | ssltd 27703 | 1 ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 𝒫 cpw 4563 {csn 4589 class class class wbr 5107 ‘cfv 6511 No csur 27551 <s cslt 27552 bday cbday 27553 <<s csslt 27692 O cold 27751 L cleft 27753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-bday 27556 df-sslt 27693 df-scut 27695 df-made 27755 df-old 27756 df-left 27758 |
| This theorem is referenced by: lltropt 27784 madebdaylemlrcut 27810 mulsproplem5 28023 mulsproplem6 28024 mulsproplem7 28025 mulsproplem8 28026 mulsuniflem 28052 |
| Copyright terms: Public domain | W3C validator |