| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltleft | Structured version Visualization version GIF version | ||
| Description: A surreal is greater than its left options. Theorem 0(ii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| ssltleft | ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6876 | . 2 ⊢ (𝐴 ∈ No → ( L ‘𝐴) ∈ V) | |
| 2 | snex 5394 | . . 3 ⊢ {𝐴} ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ∈ V) |
| 4 | leftf 27784 | . . . 4 ⊢ L : No ⟶𝒫 No | |
| 5 | 4 | ffvelcdmi 7058 | . . 3 ⊢ (𝐴 ∈ No → ( L ‘𝐴) ∈ 𝒫 No ) |
| 6 | 5 | elpwid 4575 | . 2 ⊢ (𝐴 ∈ No → ( L ‘𝐴) ⊆ No ) |
| 7 | snssi 4775 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ⊆ No ) | |
| 8 | velsn 4608 | . . . 4 ⊢ (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴) | |
| 9 | leftval 27778 | . . . . . . . . . 10 ⊢ ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} | |
| 10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝐴 ∈ No → ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴}) |
| 11 | 10 | eleq2d 2815 | . . . . . . . 8 ⊢ (𝐴 ∈ No → (𝑥 ∈ ( L ‘𝐴) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴})) |
| 12 | rabid 3430 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} ↔ (𝑥 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝑥 <s 𝐴)) | |
| 13 | 11, 12 | bitrdi 287 | . . . . . . 7 ⊢ (𝐴 ∈ No → (𝑥 ∈ ( L ‘𝐴) ↔ (𝑥 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝑥 <s 𝐴))) |
| 14 | 13 | simplbda 499 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝑥 ∈ ( L ‘𝐴)) → 𝑥 <s 𝐴) |
| 15 | breq2 5114 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 <s 𝑦 ↔ 𝑥 <s 𝐴)) | |
| 16 | 14, 15 | imbitrrid 246 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝐴 ∈ No ∧ 𝑥 ∈ ( L ‘𝐴)) → 𝑥 <s 𝑦)) |
| 17 | 16 | expd 415 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝐴 ∈ No → (𝑥 ∈ ( L ‘𝐴) → 𝑥 <s 𝑦))) |
| 18 | 8, 17 | sylbi 217 | . . 3 ⊢ (𝑦 ∈ {𝐴} → (𝐴 ∈ No → (𝑥 ∈ ( L ‘𝐴) → 𝑥 <s 𝑦))) |
| 19 | 18 | 3imp231 1112 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑥 ∈ ( L ‘𝐴) ∧ 𝑦 ∈ {𝐴}) → 𝑥 <s 𝑦) |
| 20 | 1, 3, 6, 7, 19 | ssltd 27710 | 1 ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 𝒫 cpw 4566 {csn 4592 class class class wbr 5110 ‘cfv 6514 No csur 27558 <s cslt 27559 bday cbday 27560 <<s csslt 27699 O cold 27758 L cleft 27760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-bday 27563 df-sslt 27700 df-scut 27702 df-made 27762 df-old 27763 df-left 27765 |
| This theorem is referenced by: lltropt 27791 madebdaylemlrcut 27817 mulsproplem5 28030 mulsproplem6 28031 mulsproplem7 28032 mulsproplem8 28033 mulsuniflem 28059 |
| Copyright terms: Public domain | W3C validator |