Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem15 Structured version   Visualization version   GIF version

Theorem stoweidlem15 46006
Description: This lemma is used to prove the existence of a function 𝑝 as in Lemma 1 from [BrosowskiDeutsh] p. 90: 𝑝 is in the subalgebra, such that 0 ≤ p ≤ 1, p_(t0) = 0, and p > 0 on T - U. Here (𝐺𝐼) is used to represent p_(ti) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem15.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem15.3 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem15.4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem15 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (((𝐺𝐼)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐺   𝑓,𝐼   𝑇,𝑓   𝜑,𝑓   𝑡,,𝐺   𝐴,   ,𝐼,𝑡   𝑇,,𝑡   ,𝑍
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡)   𝑄(𝑡,𝑓,)   𝑆(𝑡,𝑓,)   𝑀(𝑡,𝑓,)   𝑍(𝑡,𝑓)

Proof of Theorem stoweidlem15
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → 𝜑)
2 stoweidlem15.3 . . . . . 6 (𝜑𝐺:(1...𝑀)⟶𝑄)
32ffvelcdmda 7058 . . . . 5 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼) ∈ 𝑄)
4 elrabi 3656 . . . . . 6 ((𝐺𝐼) ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} → (𝐺𝐼) ∈ 𝐴)
5 stoweidlem15.1 . . . . . 6 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
64, 5eleq2s 2847 . . . . 5 ((𝐺𝐼) ∈ 𝑄 → (𝐺𝐼) ∈ 𝐴)
73, 6syl 17 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼) ∈ 𝐴)
8 eleq1 2817 . . . . . . . 8 (𝑓 = (𝐺𝐼) → (𝑓𝐴 ↔ (𝐺𝐼) ∈ 𝐴))
98anbi2d 630 . . . . . . 7 (𝑓 = (𝐺𝐼) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝐺𝐼) ∈ 𝐴)))
10 feq1 6668 . . . . . . 7 (𝑓 = (𝐺𝐼) → (𝑓:𝑇⟶ℝ ↔ (𝐺𝐼):𝑇⟶ℝ))
119, 10imbi12d 344 . . . . . 6 (𝑓 = (𝐺𝐼) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼):𝑇⟶ℝ)))
12 stoweidlem15.4 . . . . . 6 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
1311, 12vtoclg 3523 . . . . 5 ((𝐺𝐼) ∈ 𝐴 → ((𝜑 ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼):𝑇⟶ℝ))
147, 13syl 17 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → ((𝜑 ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼):𝑇⟶ℝ))
151, 7, 14mp2and 699 . . 3 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼):𝑇⟶ℝ)
1615ffvelcdmda 7058 . 2 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝐼)‘𝑆) ∈ ℝ)
173, 5eleqtrdi 2839 . . . . . . 7 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼) ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))})
18 fveq1 6859 . . . . . . . . . 10 ( = (𝐺𝐼) → (𝑍) = ((𝐺𝐼)‘𝑍))
1918eqeq1d 2732 . . . . . . . . 9 ( = (𝐺𝐼) → ((𝑍) = 0 ↔ ((𝐺𝐼)‘𝑍) = 0))
20 fveq1 6859 . . . . . . . . . . . 12 ( = (𝐺𝐼) → (𝑡) = ((𝐺𝐼)‘𝑡))
2120breq2d 5121 . . . . . . . . . . 11 ( = (𝐺𝐼) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝐺𝐼)‘𝑡)))
2220breq1d 5119 . . . . . . . . . . 11 ( = (𝐺𝐼) → ((𝑡) ≤ 1 ↔ ((𝐺𝐼)‘𝑡) ≤ 1))
2321, 22anbi12d 632 . . . . . . . . . 10 ( = (𝐺𝐼) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
2423ralbidv 3157 . . . . . . . . 9 ( = (𝐺𝐼) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
2519, 24anbi12d 632 . . . . . . . 8 ( = (𝐺𝐼) → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))))
2625elrab 3661 . . . . . . 7 ((𝐺𝐼) ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} ↔ ((𝐺𝐼) ∈ 𝐴 ∧ (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))))
2717, 26sylib 218 . . . . . 6 ((𝜑𝐼 ∈ (1...𝑀)) → ((𝐺𝐼) ∈ 𝐴 ∧ (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))))
2827simprd 495 . . . . 5 ((𝜑𝐼 ∈ (1...𝑀)) → (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
2928simprd 495 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))
30 fveq2 6860 . . . . . . . 8 (𝑠 = 𝑡 → ((𝐺𝐼)‘𝑠) = ((𝐺𝐼)‘𝑡))
3130breq2d 5121 . . . . . . 7 (𝑠 = 𝑡 → (0 ≤ ((𝐺𝐼)‘𝑠) ↔ 0 ≤ ((𝐺𝐼)‘𝑡)))
3230breq1d 5119 . . . . . . 7 (𝑠 = 𝑡 → (((𝐺𝐼)‘𝑠) ≤ 1 ↔ ((𝐺𝐼)‘𝑡) ≤ 1))
3331, 32anbi12d 632 . . . . . 6 (𝑠 = 𝑡 → ((0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ↔ (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
3433cbvralvw 3216 . . . . 5 (∀𝑠𝑇 (0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))
35 fveq2 6860 . . . . . . . 8 (𝑠 = 𝑆 → ((𝐺𝐼)‘𝑠) = ((𝐺𝐼)‘𝑆))
3635breq2d 5121 . . . . . . 7 (𝑠 = 𝑆 → (0 ≤ ((𝐺𝐼)‘𝑠) ↔ 0 ≤ ((𝐺𝐼)‘𝑆)))
3735breq1d 5119 . . . . . . 7 (𝑠 = 𝑆 → (((𝐺𝐼)‘𝑠) ≤ 1 ↔ ((𝐺𝐼)‘𝑆) ≤ 1))
3836, 37anbi12d 632 . . . . . 6 (𝑠 = 𝑆 → ((0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ↔ (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1)))
3938rspccva 3590 . . . . 5 ((∀𝑠𝑇 (0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ∧ 𝑆𝑇) → (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
4034, 39sylanbr 582 . . . 4 ((∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1) ∧ 𝑆𝑇) → (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
4129, 40sylan 580 . . 3 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
4241simpld 494 . 2 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → 0 ≤ ((𝐺𝐼)‘𝑆))
4341simprd 495 . 2 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝐼)‘𝑆) ≤ 1)
4416, 42, 433jca 1128 1 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (((𝐺𝐼)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  {crab 3408   class class class wbr 5109  wf 6509  cfv 6513  (class class class)co 7389  cr 11073  0cc0 11074  1c1 11075  cle 11215  ...cfz 13474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521
This theorem is referenced by:  stoweidlem30  46021  stoweidlem38  46029  stoweidlem44  46035
  Copyright terms: Public domain W3C validator