Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem15 Structured version   Visualization version   GIF version

Theorem stoweidlem15 42657
Description: This lemma is used to prove the existence of a function 𝑝 as in Lemma 1 from [BrosowskiDeutsh] p. 90: 𝑝 is in the subalgebra, such that 0 ≤ p ≤ 1, p_(t0) = 0, and p > 0 on T - U. Here (𝐺𝐼) is used to represent p_(ti) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem15.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem15.3 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem15.4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem15 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (((𝐺𝐼)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐺   𝑓,𝐼   𝑇,𝑓   𝜑,𝑓   𝑡,,𝐺   𝐴,   ,𝐼,𝑡   𝑇,,𝑡   ,𝑍
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡)   𝑄(𝑡,𝑓,)   𝑆(𝑡,𝑓,)   𝑀(𝑡,𝑓,)   𝑍(𝑡,𝑓)

Proof of Theorem stoweidlem15
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → 𝜑)
2 stoweidlem15.3 . . . . . 6 (𝜑𝐺:(1...𝑀)⟶𝑄)
32ffvelrnda 6828 . . . . 5 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼) ∈ 𝑄)
4 elrabi 3623 . . . . . 6 ((𝐺𝐼) ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} → (𝐺𝐼) ∈ 𝐴)
5 stoweidlem15.1 . . . . . 6 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
64, 5eleq2s 2908 . . . . 5 ((𝐺𝐼) ∈ 𝑄 → (𝐺𝐼) ∈ 𝐴)
73, 6syl 17 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼) ∈ 𝐴)
8 eleq1 2877 . . . . . . . 8 (𝑓 = (𝐺𝐼) → (𝑓𝐴 ↔ (𝐺𝐼) ∈ 𝐴))
98anbi2d 631 . . . . . . 7 (𝑓 = (𝐺𝐼) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝐺𝐼) ∈ 𝐴)))
10 feq1 6468 . . . . . . 7 (𝑓 = (𝐺𝐼) → (𝑓:𝑇⟶ℝ ↔ (𝐺𝐼):𝑇⟶ℝ))
119, 10imbi12d 348 . . . . . 6 (𝑓 = (𝐺𝐼) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼):𝑇⟶ℝ)))
12 stoweidlem15.4 . . . . . 6 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
1311, 12vtoclg 3515 . . . . 5 ((𝐺𝐼) ∈ 𝐴 → ((𝜑 ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼):𝑇⟶ℝ))
147, 13syl 17 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → ((𝜑 ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼):𝑇⟶ℝ))
151, 7, 14mp2and 698 . . 3 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼):𝑇⟶ℝ)
1615ffvelrnda 6828 . 2 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝐼)‘𝑆) ∈ ℝ)
173, 5eleqtrdi 2900 . . . . . . 7 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼) ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))})
18 fveq1 6644 . . . . . . . . . 10 ( = (𝐺𝐼) → (𝑍) = ((𝐺𝐼)‘𝑍))
1918eqeq1d 2800 . . . . . . . . 9 ( = (𝐺𝐼) → ((𝑍) = 0 ↔ ((𝐺𝐼)‘𝑍) = 0))
20 fveq1 6644 . . . . . . . . . . . 12 ( = (𝐺𝐼) → (𝑡) = ((𝐺𝐼)‘𝑡))
2120breq2d 5042 . . . . . . . . . . 11 ( = (𝐺𝐼) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝐺𝐼)‘𝑡)))
2220breq1d 5040 . . . . . . . . . . 11 ( = (𝐺𝐼) → ((𝑡) ≤ 1 ↔ ((𝐺𝐼)‘𝑡) ≤ 1))
2321, 22anbi12d 633 . . . . . . . . . 10 ( = (𝐺𝐼) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
2423ralbidv 3162 . . . . . . . . 9 ( = (𝐺𝐼) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
2519, 24anbi12d 633 . . . . . . . 8 ( = (𝐺𝐼) → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))))
2625elrab 3628 . . . . . . 7 ((𝐺𝐼) ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} ↔ ((𝐺𝐼) ∈ 𝐴 ∧ (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))))
2717, 26sylib 221 . . . . . 6 ((𝜑𝐼 ∈ (1...𝑀)) → ((𝐺𝐼) ∈ 𝐴 ∧ (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))))
2827simprd 499 . . . . 5 ((𝜑𝐼 ∈ (1...𝑀)) → (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
2928simprd 499 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))
30 fveq2 6645 . . . . . . . 8 (𝑠 = 𝑡 → ((𝐺𝐼)‘𝑠) = ((𝐺𝐼)‘𝑡))
3130breq2d 5042 . . . . . . 7 (𝑠 = 𝑡 → (0 ≤ ((𝐺𝐼)‘𝑠) ↔ 0 ≤ ((𝐺𝐼)‘𝑡)))
3230breq1d 5040 . . . . . . 7 (𝑠 = 𝑡 → (((𝐺𝐼)‘𝑠) ≤ 1 ↔ ((𝐺𝐼)‘𝑡) ≤ 1))
3331, 32anbi12d 633 . . . . . 6 (𝑠 = 𝑡 → ((0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ↔ (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
3433cbvralvw 3396 . . . . 5 (∀𝑠𝑇 (0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))
35 fveq2 6645 . . . . . . . 8 (𝑠 = 𝑆 → ((𝐺𝐼)‘𝑠) = ((𝐺𝐼)‘𝑆))
3635breq2d 5042 . . . . . . 7 (𝑠 = 𝑆 → (0 ≤ ((𝐺𝐼)‘𝑠) ↔ 0 ≤ ((𝐺𝐼)‘𝑆)))
3735breq1d 5040 . . . . . . 7 (𝑠 = 𝑆 → (((𝐺𝐼)‘𝑠) ≤ 1 ↔ ((𝐺𝐼)‘𝑆) ≤ 1))
3836, 37anbi12d 633 . . . . . 6 (𝑠 = 𝑆 → ((0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ↔ (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1)))
3938rspccva 3570 . . . . 5 ((∀𝑠𝑇 (0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ∧ 𝑆𝑇) → (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
4034, 39sylanbr 585 . . . 4 ((∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1) ∧ 𝑆𝑇) → (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
4129, 40sylan 583 . . 3 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
4241simpld 498 . 2 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → 0 ≤ ((𝐺𝐼)‘𝑆))
4341simprd 499 . 2 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝐼)‘𝑆) ≤ 1)
4416, 42, 433jca 1125 1 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (((𝐺𝐼)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  {crab 3110   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527  cle 10665  ...cfz 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332
This theorem is referenced by:  stoweidlem30  42672  stoweidlem38  42680  stoweidlem44  42686
  Copyright terms: Public domain W3C validator