| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → 𝜑) |
| 2 | | stoweidlem15.3 |
. . . . . 6
⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) |
| 3 | 2 | ffvelcdmda 7084 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → (𝐺‘𝐼) ∈ 𝑄) |
| 4 | | elrabi 3670 |
. . . . . 6
⊢ ((𝐺‘𝐼) ∈ {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} → (𝐺‘𝐼) ∈ 𝐴) |
| 5 | | stoweidlem15.1 |
. . . . . 6
⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} |
| 6 | 4, 5 | eleq2s 2851 |
. . . . 5
⊢ ((𝐺‘𝐼) ∈ 𝑄 → (𝐺‘𝐼) ∈ 𝐴) |
| 7 | 3, 6 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → (𝐺‘𝐼) ∈ 𝐴) |
| 8 | | eleq1 2821 |
. . . . . . . 8
⊢ (𝑓 = (𝐺‘𝐼) → (𝑓 ∈ 𝐴 ↔ (𝐺‘𝐼) ∈ 𝐴)) |
| 9 | 8 | anbi2d 630 |
. . . . . . 7
⊢ (𝑓 = (𝐺‘𝐼) → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ (𝐺‘𝐼) ∈ 𝐴))) |
| 10 | | feq1 6696 |
. . . . . . 7
⊢ (𝑓 = (𝐺‘𝐼) → (𝑓:𝑇⟶ℝ ↔ (𝐺‘𝐼):𝑇⟶ℝ)) |
| 11 | 9, 10 | imbi12d 344 |
. . . . . 6
⊢ (𝑓 = (𝐺‘𝐼) → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺‘𝐼) ∈ 𝐴) → (𝐺‘𝐼):𝑇⟶ℝ))) |
| 12 | | stoweidlem15.4 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
| 13 | 11, 12 | vtoclg 3537 |
. . . . 5
⊢ ((𝐺‘𝐼) ∈ 𝐴 → ((𝜑 ∧ (𝐺‘𝐼) ∈ 𝐴) → (𝐺‘𝐼):𝑇⟶ℝ)) |
| 14 | 7, 13 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → ((𝜑 ∧ (𝐺‘𝐼) ∈ 𝐴) → (𝐺‘𝐼):𝑇⟶ℝ)) |
| 15 | 1, 7, 14 | mp2and 699 |
. . 3
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → (𝐺‘𝐼):𝑇⟶ℝ) |
| 16 | 15 | ffvelcdmda 7084 |
. 2
⊢ (((𝜑 ∧ 𝐼 ∈ (1...𝑀)) ∧ 𝑆 ∈ 𝑇) → ((𝐺‘𝐼)‘𝑆) ∈ ℝ) |
| 17 | 3, 5 | eleqtrdi 2843 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → (𝐺‘𝐼) ∈ {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))}) |
| 18 | | fveq1 6885 |
. . . . . . . . . 10
⊢ (ℎ = (𝐺‘𝐼) → (ℎ‘𝑍) = ((𝐺‘𝐼)‘𝑍)) |
| 19 | 18 | eqeq1d 2736 |
. . . . . . . . 9
⊢ (ℎ = (𝐺‘𝐼) → ((ℎ‘𝑍) = 0 ↔ ((𝐺‘𝐼)‘𝑍) = 0)) |
| 20 | | fveq1 6885 |
. . . . . . . . . . . 12
⊢ (ℎ = (𝐺‘𝐼) → (ℎ‘𝑡) = ((𝐺‘𝐼)‘𝑡)) |
| 21 | 20 | breq2d 5135 |
. . . . . . . . . . 11
⊢ (ℎ = (𝐺‘𝐼) → (0 ≤ (ℎ‘𝑡) ↔ 0 ≤ ((𝐺‘𝐼)‘𝑡))) |
| 22 | 20 | breq1d 5133 |
. . . . . . . . . . 11
⊢ (ℎ = (𝐺‘𝐼) → ((ℎ‘𝑡) ≤ 1 ↔ ((𝐺‘𝐼)‘𝑡) ≤ 1)) |
| 23 | 21, 22 | anbi12d 632 |
. . . . . . . . . 10
⊢ (ℎ = (𝐺‘𝐼) → ((0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1))) |
| 24 | 23 | ralbidv 3165 |
. . . . . . . . 9
⊢ (ℎ = (𝐺‘𝐼) → (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1))) |
| 25 | 19, 24 | anbi12d 632 |
. . . . . . . 8
⊢ (ℎ = (𝐺‘𝐼) → (((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)) ↔ (((𝐺‘𝐼)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1)))) |
| 26 | 25 | elrab 3675 |
. . . . . . 7
⊢ ((𝐺‘𝐼) ∈ {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} ↔ ((𝐺‘𝐼) ∈ 𝐴 ∧ (((𝐺‘𝐼)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1)))) |
| 27 | 17, 26 | sylib 218 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → ((𝐺‘𝐼) ∈ 𝐴 ∧ (((𝐺‘𝐼)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1)))) |
| 28 | 27 | simprd 495 |
. . . . 5
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → (((𝐺‘𝐼)‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1))) |
| 29 | 28 | simprd 495 |
. . . 4
⊢ ((𝜑 ∧ 𝐼 ∈ (1...𝑀)) → ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1)) |
| 30 | | fveq2 6886 |
. . . . . . . 8
⊢ (𝑠 = 𝑡 → ((𝐺‘𝐼)‘𝑠) = ((𝐺‘𝐼)‘𝑡)) |
| 31 | 30 | breq2d 5135 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → (0 ≤ ((𝐺‘𝐼)‘𝑠) ↔ 0 ≤ ((𝐺‘𝐼)‘𝑡))) |
| 32 | 30 | breq1d 5133 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → (((𝐺‘𝐼)‘𝑠) ≤ 1 ↔ ((𝐺‘𝐼)‘𝑡) ≤ 1)) |
| 33 | 31, 32 | anbi12d 632 |
. . . . . 6
⊢ (𝑠 = 𝑡 → ((0 ≤ ((𝐺‘𝐼)‘𝑠) ∧ ((𝐺‘𝐼)‘𝑠) ≤ 1) ↔ (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1))) |
| 34 | 33 | cbvralvw 3223 |
. . . . 5
⊢
(∀𝑠 ∈
𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑠) ∧ ((𝐺‘𝐼)‘𝑠) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1)) |
| 35 | | fveq2 6886 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → ((𝐺‘𝐼)‘𝑠) = ((𝐺‘𝐼)‘𝑆)) |
| 36 | 35 | breq2d 5135 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (0 ≤ ((𝐺‘𝐼)‘𝑠) ↔ 0 ≤ ((𝐺‘𝐼)‘𝑆))) |
| 37 | 35 | breq1d 5133 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (((𝐺‘𝐼)‘𝑠) ≤ 1 ↔ ((𝐺‘𝐼)‘𝑆) ≤ 1)) |
| 38 | 36, 37 | anbi12d 632 |
. . . . . 6
⊢ (𝑠 = 𝑆 → ((0 ≤ ((𝐺‘𝐼)‘𝑠) ∧ ((𝐺‘𝐼)‘𝑠) ≤ 1) ↔ (0 ≤ ((𝐺‘𝐼)‘𝑆) ∧ ((𝐺‘𝐼)‘𝑆) ≤ 1))) |
| 39 | 38 | rspccva 3604 |
. . . . 5
⊢
((∀𝑠 ∈
𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑠) ∧ ((𝐺‘𝐼)‘𝑠) ≤ 1) ∧ 𝑆 ∈ 𝑇) → (0 ≤ ((𝐺‘𝐼)‘𝑆) ∧ ((𝐺‘𝐼)‘𝑆) ≤ 1)) |
| 40 | 34, 39 | sylanbr 582 |
. . . 4
⊢
((∀𝑡 ∈
𝑇 (0 ≤ ((𝐺‘𝐼)‘𝑡) ∧ ((𝐺‘𝐼)‘𝑡) ≤ 1) ∧ 𝑆 ∈ 𝑇) → (0 ≤ ((𝐺‘𝐼)‘𝑆) ∧ ((𝐺‘𝐼)‘𝑆) ≤ 1)) |
| 41 | 29, 40 | sylan 580 |
. . 3
⊢ (((𝜑 ∧ 𝐼 ∈ (1...𝑀)) ∧ 𝑆 ∈ 𝑇) → (0 ≤ ((𝐺‘𝐼)‘𝑆) ∧ ((𝐺‘𝐼)‘𝑆) ≤ 1)) |
| 42 | 41 | simpld 494 |
. 2
⊢ (((𝜑 ∧ 𝐼 ∈ (1...𝑀)) ∧ 𝑆 ∈ 𝑇) → 0 ≤ ((𝐺‘𝐼)‘𝑆)) |
| 43 | 41 | simprd 495 |
. 2
⊢ (((𝜑 ∧ 𝐼 ∈ (1...𝑀)) ∧ 𝑆 ∈ 𝑇) → ((𝐺‘𝐼)‘𝑆) ≤ 1) |
| 44 | 16, 42, 43 | 3jca 1128 |
1
⊢ (((𝜑 ∧ 𝐼 ∈ (1...𝑀)) ∧ 𝑆 ∈ 𝑇) → (((𝐺‘𝐼)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺‘𝐼)‘𝑆) ∧ ((𝐺‘𝐼)‘𝑆) ≤ 1)) |