Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem15 Structured version   Visualization version   GIF version

Theorem stoweidlem15 45987
Description: This lemma is used to prove the existence of a function 𝑝 as in Lemma 1 from [BrosowskiDeutsh] p. 90: 𝑝 is in the subalgebra, such that 0 ≤ p ≤ 1, p_(t0) = 0, and p > 0 on T - U. Here (𝐺𝐼) is used to represent p_(ti) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem15.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem15.3 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem15.4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem15 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (((𝐺𝐼)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐺   𝑓,𝐼   𝑇,𝑓   𝜑,𝑓   𝑡,,𝐺   𝐴,   ,𝐼,𝑡   𝑇,,𝑡   ,𝑍
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡)   𝑄(𝑡,𝑓,)   𝑆(𝑡,𝑓,)   𝑀(𝑡,𝑓,)   𝑍(𝑡,𝑓)

Proof of Theorem stoweidlem15
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → 𝜑)
2 stoweidlem15.3 . . . . . 6 (𝜑𝐺:(1...𝑀)⟶𝑄)
32ffvelcdmda 7084 . . . . 5 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼) ∈ 𝑄)
4 elrabi 3670 . . . . . 6 ((𝐺𝐼) ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} → (𝐺𝐼) ∈ 𝐴)
5 stoweidlem15.1 . . . . . 6 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
64, 5eleq2s 2851 . . . . 5 ((𝐺𝐼) ∈ 𝑄 → (𝐺𝐼) ∈ 𝐴)
73, 6syl 17 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼) ∈ 𝐴)
8 eleq1 2821 . . . . . . . 8 (𝑓 = (𝐺𝐼) → (𝑓𝐴 ↔ (𝐺𝐼) ∈ 𝐴))
98anbi2d 630 . . . . . . 7 (𝑓 = (𝐺𝐼) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝐺𝐼) ∈ 𝐴)))
10 feq1 6696 . . . . . . 7 (𝑓 = (𝐺𝐼) → (𝑓:𝑇⟶ℝ ↔ (𝐺𝐼):𝑇⟶ℝ))
119, 10imbi12d 344 . . . . . 6 (𝑓 = (𝐺𝐼) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼):𝑇⟶ℝ)))
12 stoweidlem15.4 . . . . . 6 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
1311, 12vtoclg 3537 . . . . 5 ((𝐺𝐼) ∈ 𝐴 → ((𝜑 ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼):𝑇⟶ℝ))
147, 13syl 17 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → ((𝜑 ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼):𝑇⟶ℝ))
151, 7, 14mp2and 699 . . 3 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼):𝑇⟶ℝ)
1615ffvelcdmda 7084 . 2 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝐼)‘𝑆) ∈ ℝ)
173, 5eleqtrdi 2843 . . . . . . 7 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼) ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))})
18 fveq1 6885 . . . . . . . . . 10 ( = (𝐺𝐼) → (𝑍) = ((𝐺𝐼)‘𝑍))
1918eqeq1d 2736 . . . . . . . . 9 ( = (𝐺𝐼) → ((𝑍) = 0 ↔ ((𝐺𝐼)‘𝑍) = 0))
20 fveq1 6885 . . . . . . . . . . . 12 ( = (𝐺𝐼) → (𝑡) = ((𝐺𝐼)‘𝑡))
2120breq2d 5135 . . . . . . . . . . 11 ( = (𝐺𝐼) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝐺𝐼)‘𝑡)))
2220breq1d 5133 . . . . . . . . . . 11 ( = (𝐺𝐼) → ((𝑡) ≤ 1 ↔ ((𝐺𝐼)‘𝑡) ≤ 1))
2321, 22anbi12d 632 . . . . . . . . . 10 ( = (𝐺𝐼) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
2423ralbidv 3165 . . . . . . . . 9 ( = (𝐺𝐼) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
2519, 24anbi12d 632 . . . . . . . 8 ( = (𝐺𝐼) → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))))
2625elrab 3675 . . . . . . 7 ((𝐺𝐼) ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} ↔ ((𝐺𝐼) ∈ 𝐴 ∧ (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))))
2717, 26sylib 218 . . . . . 6 ((𝜑𝐼 ∈ (1...𝑀)) → ((𝐺𝐼) ∈ 𝐴 ∧ (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))))
2827simprd 495 . . . . 5 ((𝜑𝐼 ∈ (1...𝑀)) → (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
2928simprd 495 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))
30 fveq2 6886 . . . . . . . 8 (𝑠 = 𝑡 → ((𝐺𝐼)‘𝑠) = ((𝐺𝐼)‘𝑡))
3130breq2d 5135 . . . . . . 7 (𝑠 = 𝑡 → (0 ≤ ((𝐺𝐼)‘𝑠) ↔ 0 ≤ ((𝐺𝐼)‘𝑡)))
3230breq1d 5133 . . . . . . 7 (𝑠 = 𝑡 → (((𝐺𝐼)‘𝑠) ≤ 1 ↔ ((𝐺𝐼)‘𝑡) ≤ 1))
3331, 32anbi12d 632 . . . . . 6 (𝑠 = 𝑡 → ((0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ↔ (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
3433cbvralvw 3223 . . . . 5 (∀𝑠𝑇 (0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))
35 fveq2 6886 . . . . . . . 8 (𝑠 = 𝑆 → ((𝐺𝐼)‘𝑠) = ((𝐺𝐼)‘𝑆))
3635breq2d 5135 . . . . . . 7 (𝑠 = 𝑆 → (0 ≤ ((𝐺𝐼)‘𝑠) ↔ 0 ≤ ((𝐺𝐼)‘𝑆)))
3735breq1d 5133 . . . . . . 7 (𝑠 = 𝑆 → (((𝐺𝐼)‘𝑠) ≤ 1 ↔ ((𝐺𝐼)‘𝑆) ≤ 1))
3836, 37anbi12d 632 . . . . . 6 (𝑠 = 𝑆 → ((0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ↔ (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1)))
3938rspccva 3604 . . . . 5 ((∀𝑠𝑇 (0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ∧ 𝑆𝑇) → (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
4034, 39sylanbr 582 . . . 4 ((∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1) ∧ 𝑆𝑇) → (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
4129, 40sylan 580 . . 3 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
4241simpld 494 . 2 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → 0 ≤ ((𝐺𝐼)‘𝑆))
4341simprd 495 . 2 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝐼)‘𝑆) ≤ 1)
4416, 42, 433jca 1128 1 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (((𝐺𝐼)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  {crab 3419   class class class wbr 5123  wf 6537  cfv 6541  (class class class)co 7413  cr 11136  0cc0 11137  1c1 11138  cle 11278  ...cfz 13529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549
This theorem is referenced by:  stoweidlem30  46002  stoweidlem38  46010  stoweidlem44  46016
  Copyright terms: Public domain W3C validator