Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem15 Structured version   Visualization version   GIF version

Theorem stoweidlem15 46006
Description: This lemma is used to prove the existence of a function 𝑝 as in Lemma 1 from [BrosowskiDeutsh] p. 90: 𝑝 is in the subalgebra, such that 0 ≤ p ≤ 1, p_(t0) = 0, and p > 0 on T - U. Here (𝐺𝐼) is used to represent p_(ti) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem15.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem15.3 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem15.4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem15 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (((𝐺𝐼)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐺   𝑓,𝐼   𝑇,𝑓   𝜑,𝑓   𝑡,,𝐺   𝐴,   ,𝐼,𝑡   𝑇,,𝑡   ,𝑍
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡)   𝑄(𝑡,𝑓,)   𝑆(𝑡,𝑓,)   𝑀(𝑡,𝑓,)   𝑍(𝑡,𝑓)

Proof of Theorem stoweidlem15
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → 𝜑)
2 stoweidlem15.3 . . . . . 6 (𝜑𝐺:(1...𝑀)⟶𝑄)
32ffvelcdmda 7018 . . . . 5 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼) ∈ 𝑄)
4 elrabi 3643 . . . . . 6 ((𝐺𝐼) ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} → (𝐺𝐼) ∈ 𝐴)
5 stoweidlem15.1 . . . . . 6 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
64, 5eleq2s 2846 . . . . 5 ((𝐺𝐼) ∈ 𝑄 → (𝐺𝐼) ∈ 𝐴)
73, 6syl 17 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼) ∈ 𝐴)
8 eleq1 2816 . . . . . . . 8 (𝑓 = (𝐺𝐼) → (𝑓𝐴 ↔ (𝐺𝐼) ∈ 𝐴))
98anbi2d 630 . . . . . . 7 (𝑓 = (𝐺𝐼) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝐺𝐼) ∈ 𝐴)))
10 feq1 6630 . . . . . . 7 (𝑓 = (𝐺𝐼) → (𝑓:𝑇⟶ℝ ↔ (𝐺𝐼):𝑇⟶ℝ))
119, 10imbi12d 344 . . . . . 6 (𝑓 = (𝐺𝐼) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼):𝑇⟶ℝ)))
12 stoweidlem15.4 . . . . . 6 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
1311, 12vtoclg 3509 . . . . 5 ((𝐺𝐼) ∈ 𝐴 → ((𝜑 ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼):𝑇⟶ℝ))
147, 13syl 17 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → ((𝜑 ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼):𝑇⟶ℝ))
151, 7, 14mp2and 699 . . 3 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼):𝑇⟶ℝ)
1615ffvelcdmda 7018 . 2 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝐼)‘𝑆) ∈ ℝ)
173, 5eleqtrdi 2838 . . . . . . 7 ((𝜑𝐼 ∈ (1...𝑀)) → (𝐺𝐼) ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))})
18 fveq1 6821 . . . . . . . . . 10 ( = (𝐺𝐼) → (𝑍) = ((𝐺𝐼)‘𝑍))
1918eqeq1d 2731 . . . . . . . . 9 ( = (𝐺𝐼) → ((𝑍) = 0 ↔ ((𝐺𝐼)‘𝑍) = 0))
20 fveq1 6821 . . . . . . . . . . . 12 ( = (𝐺𝐼) → (𝑡) = ((𝐺𝐼)‘𝑡))
2120breq2d 5104 . . . . . . . . . . 11 ( = (𝐺𝐼) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝐺𝐼)‘𝑡)))
2220breq1d 5102 . . . . . . . . . . 11 ( = (𝐺𝐼) → ((𝑡) ≤ 1 ↔ ((𝐺𝐼)‘𝑡) ≤ 1))
2321, 22anbi12d 632 . . . . . . . . . 10 ( = (𝐺𝐼) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
2423ralbidv 3152 . . . . . . . . 9 ( = (𝐺𝐼) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
2519, 24anbi12d 632 . . . . . . . 8 ( = (𝐺𝐼) → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))))
2625elrab 3648 . . . . . . 7 ((𝐺𝐼) ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} ↔ ((𝐺𝐼) ∈ 𝐴 ∧ (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))))
2717, 26sylib 218 . . . . . 6 ((𝜑𝐼 ∈ (1...𝑀)) → ((𝐺𝐼) ∈ 𝐴 ∧ (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))))
2827simprd 495 . . . . 5 ((𝜑𝐼 ∈ (1...𝑀)) → (((𝐺𝐼)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
2928simprd 495 . . . 4 ((𝜑𝐼 ∈ (1...𝑀)) → ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))
30 fveq2 6822 . . . . . . . 8 (𝑠 = 𝑡 → ((𝐺𝐼)‘𝑠) = ((𝐺𝐼)‘𝑡))
3130breq2d 5104 . . . . . . 7 (𝑠 = 𝑡 → (0 ≤ ((𝐺𝐼)‘𝑠) ↔ 0 ≤ ((𝐺𝐼)‘𝑡)))
3230breq1d 5102 . . . . . . 7 (𝑠 = 𝑡 → (((𝐺𝐼)‘𝑠) ≤ 1 ↔ ((𝐺𝐼)‘𝑡) ≤ 1))
3331, 32anbi12d 632 . . . . . 6 (𝑠 = 𝑡 → ((0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ↔ (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1)))
3433cbvralvw 3207 . . . . 5 (∀𝑠𝑇 (0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1))
35 fveq2 6822 . . . . . . . 8 (𝑠 = 𝑆 → ((𝐺𝐼)‘𝑠) = ((𝐺𝐼)‘𝑆))
3635breq2d 5104 . . . . . . 7 (𝑠 = 𝑆 → (0 ≤ ((𝐺𝐼)‘𝑠) ↔ 0 ≤ ((𝐺𝐼)‘𝑆)))
3735breq1d 5102 . . . . . . 7 (𝑠 = 𝑆 → (((𝐺𝐼)‘𝑠) ≤ 1 ↔ ((𝐺𝐼)‘𝑆) ≤ 1))
3836, 37anbi12d 632 . . . . . 6 (𝑠 = 𝑆 → ((0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ↔ (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1)))
3938rspccva 3576 . . . . 5 ((∀𝑠𝑇 (0 ≤ ((𝐺𝐼)‘𝑠) ∧ ((𝐺𝐼)‘𝑠) ≤ 1) ∧ 𝑆𝑇) → (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
4034, 39sylanbr 582 . . . 4 ((∀𝑡𝑇 (0 ≤ ((𝐺𝐼)‘𝑡) ∧ ((𝐺𝐼)‘𝑡) ≤ 1) ∧ 𝑆𝑇) → (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
4129, 40sylan 580 . . 3 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
4241simpld 494 . 2 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → 0 ≤ ((𝐺𝐼)‘𝑆))
4341simprd 495 . 2 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝐼)‘𝑆) ≤ 1)
4416, 42, 433jca 1128 1 (((𝜑𝐼 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (((𝐺𝐼)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺𝐼)‘𝑆) ∧ ((𝐺𝐼)‘𝑆) ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3394   class class class wbr 5092  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010  cle 11150  ...cfz 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490
This theorem is referenced by:  stoweidlem30  46021  stoweidlem38  46029  stoweidlem44  46035
  Copyright terms: Public domain W3C validator