Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem16 Structured version   Visualization version   GIF version

Theorem stoweidlem16 46021
Description: Lemma for stoweid 46068. The subset 𝑌 of functions in the algebra 𝐴, with values in [ 0 , 1 ], is closed under multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem16.1 𝑡𝜑
stoweidlem16.2 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem16.3 𝐻 = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
stoweidlem16.4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem16.5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
Assertion
Ref Expression
stoweidlem16 ((𝜑𝑓𝑌𝑔𝑌) → 𝐻𝑌)
Distinct variable groups:   𝑓,𝑔,,𝑡,𝐴   𝑇,𝑓,,𝑡   𝜑,𝑓   ,𝐻
Allowed substitution hints:   𝜑(𝑡,𝑔,)   𝑇(𝑔)   𝐻(𝑡,𝑓,𝑔)   𝑌(𝑡,𝑓,𝑔,)

Proof of Theorem stoweidlem16
StepHypRef Expression
1 stoweidlem16.3 . . . 4 𝐻 = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
2 simp1 1136 . . . . 5 ((𝜑𝑓𝑌𝑔𝑌) → 𝜑)
3 fveq1 6860 . . . . . . . . . . 11 ( = 𝑓 → (𝑡) = (𝑓𝑡))
43breq2d 5122 . . . . . . . . . 10 ( = 𝑓 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑓𝑡)))
53breq1d 5120 . . . . . . . . . 10 ( = 𝑓 → ((𝑡) ≤ 1 ↔ (𝑓𝑡) ≤ 1))
64, 5anbi12d 632 . . . . . . . . 9 ( = 𝑓 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
76ralbidv 3157 . . . . . . . 8 ( = 𝑓 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
8 stoweidlem16.2 . . . . . . . 8 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
97, 8elrab2 3665 . . . . . . 7 (𝑓𝑌 ↔ (𝑓𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
109simplbi 497 . . . . . 6 (𝑓𝑌𝑓𝐴)
11103ad2ant2 1134 . . . . 5 ((𝜑𝑓𝑌𝑔𝑌) → 𝑓𝐴)
12 fveq1 6860 . . . . . . . . . . 11 ( = 𝑔 → (𝑡) = (𝑔𝑡))
1312breq2d 5122 . . . . . . . . . 10 ( = 𝑔 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑔𝑡)))
1412breq1d 5120 . . . . . . . . . 10 ( = 𝑔 → ((𝑡) ≤ 1 ↔ (𝑔𝑡) ≤ 1))
1513, 14anbi12d 632 . . . . . . . . 9 ( = 𝑔 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
1615ralbidv 3157 . . . . . . . 8 ( = 𝑔 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
1716, 8elrab2 3665 . . . . . . 7 (𝑔𝑌 ↔ (𝑔𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
1817simplbi 497 . . . . . 6 (𝑔𝑌𝑔𝐴)
19183ad2ant3 1135 . . . . 5 ((𝜑𝑓𝑌𝑔𝑌) → 𝑔𝐴)
20 stoweidlem16.5 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
212, 11, 19, 20syl3anc 1373 . . . 4 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
221, 21eqeltrid 2833 . . 3 ((𝜑𝑓𝑌𝑔𝑌) → 𝐻𝐴)
23 stoweidlem16.1 . . . . 5 𝑡𝜑
24 nfra1 3262 . . . . . . . 8 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
25 nfcv 2892 . . . . . . . 8 𝑡𝐴
2624, 25nfrabw 3446 . . . . . . 7 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
278, 26nfcxfr 2890 . . . . . 6 𝑡𝑌
2827nfcri 2884 . . . . 5 𝑡 𝑓𝑌
2927nfcri 2884 . . . . 5 𝑡 𝑔𝑌
3023, 28, 29nf3an 1901 . . . 4 𝑡(𝜑𝑓𝑌𝑔𝑌)
312, 11jca 511 . . . . . . . . . . 11 ((𝜑𝑓𝑌𝑔𝑌) → (𝜑𝑓𝐴))
3231adantr 480 . . . . . . . . . 10 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝜑𝑓𝐴))
33 stoweidlem16.4 . . . . . . . . . 10 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
3432, 33syl 17 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 𝑓:𝑇⟶ℝ)
35 simpr 484 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 𝑡𝑇)
3634, 35ffvelcdmd 7060 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝑓𝑡) ∈ ℝ)
372, 19jca 511 . . . . . . . . . 10 ((𝜑𝑓𝑌𝑔𝑌) → (𝜑𝑔𝐴))
38 eleq1w 2812 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓𝐴𝑔𝐴))
3938anbi2d 630 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝜑𝑓𝐴) ↔ (𝜑𝑔𝐴)))
40 feq1 6669 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓:𝑇⟶ℝ ↔ 𝑔:𝑇⟶ℝ))
4139, 40imbi12d 344 . . . . . . . . . . 11 (𝑓 = 𝑔 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝑔𝐴) → 𝑔:𝑇⟶ℝ)))
4241, 33vtoclg 3523 . . . . . . . . . 10 (𝑔𝐴 → ((𝜑𝑔𝐴) → 𝑔:𝑇⟶ℝ))
4319, 37, 42sylc 65 . . . . . . . . 9 ((𝜑𝑓𝑌𝑔𝑌) → 𝑔:𝑇⟶ℝ)
4443ffvelcdmda 7059 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝑔𝑡) ∈ ℝ)
459simprbi 496 . . . . . . . . . . 11 (𝑓𝑌 → ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1))
46453ad2ant2 1134 . . . . . . . . . 10 ((𝜑𝑓𝑌𝑔𝑌) → ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1))
4746r19.21bi 3230 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1))
4847simpld 494 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 0 ≤ (𝑓𝑡))
4917simprbi 496 . . . . . . . . . . 11 (𝑔𝑌 → ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))
50493ad2ant3 1135 . . . . . . . . . 10 ((𝜑𝑓𝑌𝑔𝑌) → ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))
5150r19.21bi 3230 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))
5251simpld 494 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 0 ≤ (𝑔𝑡))
5336, 44, 48, 52mulge0d 11762 . . . . . . 7 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 0 ≤ ((𝑓𝑡) · (𝑔𝑡)))
5436, 44remulcld 11211 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → ((𝑓𝑡) · (𝑔𝑡)) ∈ ℝ)
551fvmpt2 6982 . . . . . . . 8 ((𝑡𝑇 ∧ ((𝑓𝑡) · (𝑔𝑡)) ∈ ℝ) → (𝐻𝑡) = ((𝑓𝑡) · (𝑔𝑡)))
5635, 54, 55syl2anc 584 . . . . . . 7 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝐻𝑡) = ((𝑓𝑡) · (𝑔𝑡)))
5753, 56breqtrrd 5138 . . . . . 6 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 0 ≤ (𝐻𝑡))
58 1red 11182 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → 1 ∈ ℝ)
5947simprd 495 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝑓𝑡) ≤ 1)
6051simprd 495 . . . . . . . . 9 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝑔𝑡) ≤ 1)
6136, 58, 44, 58, 48, 52, 59, 60lemul12ad 12132 . . . . . . . 8 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → ((𝑓𝑡) · (𝑔𝑡)) ≤ (1 · 1))
62 1t1e1 12350 . . . . . . . 8 (1 · 1) = 1
6361, 62breqtrdi 5151 . . . . . . 7 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → ((𝑓𝑡) · (𝑔𝑡)) ≤ 1)
6456, 63eqbrtrd 5132 . . . . . 6 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (𝐻𝑡) ≤ 1)
6557, 64jca 511 . . . . 5 (((𝜑𝑓𝑌𝑔𝑌) ∧ 𝑡𝑇) → (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))
6665ex 412 . . . 4 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 → (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
6730, 66ralrimi 3236 . . 3 ((𝜑𝑓𝑌𝑔𝑌) → ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))
68 nfmpt1 5209 . . . . . . 7 𝑡(𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
691, 68nfcxfr 2890 . . . . . 6 𝑡𝐻
7069nfeq2 2910 . . . . 5 𝑡 = 𝐻
71 fveq1 6860 . . . . . . 7 ( = 𝐻 → (𝑡) = (𝐻𝑡))
7271breq2d 5122 . . . . . 6 ( = 𝐻 → (0 ≤ (𝑡) ↔ 0 ≤ (𝐻𝑡)))
7371breq1d 5120 . . . . . 6 ( = 𝐻 → ((𝑡) ≤ 1 ↔ (𝐻𝑡) ≤ 1))
7472, 73anbi12d 632 . . . . 5 ( = 𝐻 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
7570, 74ralbid 3251 . . . 4 ( = 𝐻 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
7675elrab 3662 . . 3 (𝐻 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ↔ (𝐻𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
7722, 67, 76sylanbrc 583 . 2 ((𝜑𝑓𝑌𝑔𝑌) → 𝐻 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)})
7877, 8eleqtrrdi 2840 1 ((𝜑𝑓𝑌𝑔𝑌) → 𝐻𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wral 3045  {crab 3408   class class class wbr 5110  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   · cmul 11080  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415
This theorem is referenced by:  stoweidlem48  46053  stoweidlem51  46056
  Copyright terms: Public domain W3C validator