Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem38 Structured version   Visualization version   GIF version

Theorem stoweidlem38 45994
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem38.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem38.2 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem38.3 (𝜑𝑀 ∈ ℕ)
stoweidlem38.4 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem38.5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem38 ((𝜑𝑆𝑇) → (0 ≤ (𝑃𝑆) ∧ (𝑃𝑆) ≤ 1))
Distinct variable groups:   𝑓,𝑖,𝑇   𝐴,𝑓   𝑓,𝐺   𝜑,𝑓,𝑖   ,𝑖,𝑡,𝑇   𝐴,   ,𝐺,𝑡   ,𝑍   𝑖,𝑀,𝑡   𝑆,𝑖
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡,𝑖)   𝑃(𝑡,𝑓,,𝑖)   𝑄(𝑡,𝑓,,𝑖)   𝑆(𝑡,𝑓,)   𝐺(𝑖)   𝑀(𝑓,)   𝑍(𝑡,𝑓,𝑖)

Proof of Theorem stoweidlem38
StepHypRef Expression
1 stoweidlem38.3 . . . . . 6 (𝜑𝑀 ∈ ℕ)
21nnrecred 12315 . . . . 5 (𝜑 → (1 / 𝑀) ∈ ℝ)
32adantr 480 . . . 4 ((𝜑𝑆𝑇) → (1 / 𝑀) ∈ ℝ)
4 fzfid 14011 . . . . 5 ((𝜑𝑆𝑇) → (1...𝑀) ∈ Fin)
5 stoweidlem38.1 . . . . . . . 8 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
6 stoweidlem38.4 . . . . . . . 8 (𝜑𝐺:(1...𝑀)⟶𝑄)
7 stoweidlem38.5 . . . . . . . 8 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
85, 6, 7stoweidlem15 45971 . . . . . . 7 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (((𝐺𝑖)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑆) ∧ ((𝐺𝑖)‘𝑆) ≤ 1))
98simp1d 1141 . . . . . 6 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝑖)‘𝑆) ∈ ℝ)
109an32s 652 . . . . 5 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑆) ∈ ℝ)
114, 10fsumrecl 15767 . . . 4 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ∈ ℝ)
12 1red 11260 . . . . . 6 (𝜑 → 1 ∈ ℝ)
13 0le1 11784 . . . . . . 7 0 ≤ 1
1413a1i 11 . . . . . 6 (𝜑 → 0 ≤ 1)
151nnred 12279 . . . . . 6 (𝜑𝑀 ∈ ℝ)
161nngt0d 12313 . . . . . 6 (𝜑 → 0 < 𝑀)
17 divge0 12135 . . . . . 6 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (1 / 𝑀))
1812, 14, 15, 16, 17syl22anc 839 . . . . 5 (𝜑 → 0 ≤ (1 / 𝑀))
1918adantr 480 . . . 4 ((𝜑𝑆𝑇) → 0 ≤ (1 / 𝑀))
208simp2d 1142 . . . . . 6 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → 0 ≤ ((𝐺𝑖)‘𝑆))
2120an32s 652 . . . . 5 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ ((𝐺𝑖)‘𝑆))
224, 10, 21fsumge0 15828 . . . 4 ((𝜑𝑆𝑇) → 0 ≤ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))
233, 11, 19, 22mulge0d 11838 . . 3 ((𝜑𝑆𝑇) → 0 ≤ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
24 stoweidlem38.2 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
255, 24, 1, 6, 7stoweidlem30 45986 . . 3 ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
2623, 25breqtrrd 5176 . 2 ((𝜑𝑆𝑇) → 0 ≤ (𝑃𝑆))
27 1red 11260 . . . . . . 7 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 1 ∈ ℝ)
288simp3d 1143 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝑖)‘𝑆) ≤ 1)
2928an32s 652 . . . . . . 7 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑆) ≤ 1)
304, 10, 27, 29fsumle 15832 . . . . . 6 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ Σ𝑖 ∈ (1...𝑀)1)
31 fzfid 14011 . . . . . . . . 9 (𝜑 → (1...𝑀) ∈ Fin)
32 ax-1cn 11211 . . . . . . . . 9 1 ∈ ℂ
33 fsumconst 15823 . . . . . . . . 9 (((1...𝑀) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑖 ∈ (1...𝑀)1 = ((♯‘(1...𝑀)) · 1))
3431, 32, 33sylancl 586 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (1...𝑀)1 = ((♯‘(1...𝑀)) · 1))
351nnnn0d 12585 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
36 hashfz1 14382 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
3735, 36syl 17 . . . . . . . . 9 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
3837oveq1d 7446 . . . . . . . 8 (𝜑 → ((♯‘(1...𝑀)) · 1) = (𝑀 · 1))
391nncnd 12280 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
4039mulridd 11276 . . . . . . . 8 (𝜑 → (𝑀 · 1) = 𝑀)
4134, 38, 403eqtrd 2779 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...𝑀)1 = 𝑀)
4241adantr 480 . . . . . 6 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)1 = 𝑀)
4330, 42breqtrd 5174 . . . . 5 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ 𝑀)
4415adantr 480 . . . . . 6 ((𝜑𝑆𝑇) → 𝑀 ∈ ℝ)
45 1red 11260 . . . . . . 7 ((𝜑𝑆𝑇) → 1 ∈ ℝ)
46 0lt1 11783 . . . . . . . 8 0 < 1
4746a1i 11 . . . . . . 7 ((𝜑𝑆𝑇) → 0 < 1)
4815, 16jca 511 . . . . . . . 8 (𝜑 → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
4948adantr 480 . . . . . . 7 ((𝜑𝑆𝑇) → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
50 divgt0 12134 . . . . . . 7 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 < (1 / 𝑀))
5145, 47, 49, 50syl21anc 838 . . . . . 6 ((𝜑𝑆𝑇) → 0 < (1 / 𝑀))
52 lemul2 12118 . . . . . 6 ((Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ((1 / 𝑀) ∈ ℝ ∧ 0 < (1 / 𝑀))) → (Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ 𝑀 ↔ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)) ≤ ((1 / 𝑀) · 𝑀)))
5311, 44, 3, 51, 52syl112anc 1373 . . . . 5 ((𝜑𝑆𝑇) → (Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ 𝑀 ↔ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)) ≤ ((1 / 𝑀) · 𝑀)))
5443, 53mpbid 232 . . . 4 ((𝜑𝑆𝑇) → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)) ≤ ((1 / 𝑀) · 𝑀))
5525, 54eqbrtrd 5170 . . 3 ((𝜑𝑆𝑇) → (𝑃𝑆) ≤ ((1 / 𝑀) · 𝑀))
5632a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℂ)
571nnne0d 12314 . . . . . 6 (𝜑𝑀 ≠ 0)
5856, 39, 573jca 1127 . . . . 5 (𝜑 → (1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
5958adantr 480 . . . 4 ((𝜑𝑆𝑇) → (1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
60 divcan1 11929 . . . 4 ((1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) → ((1 / 𝑀) · 𝑀) = 1)
6159, 60syl 17 . . 3 ((𝜑𝑆𝑇) → ((1 / 𝑀) · 𝑀) = 1)
6255, 61breqtrd 5174 . 2 ((𝜑𝑆𝑇) → (𝑃𝑆) ≤ 1)
6326, 62jca 511 1 ((𝜑𝑆𝑇) → (0 ≤ (𝑃𝑆) ∧ (𝑃𝑆) ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  {crab 3433   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  cr 11152  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293  cle 11294   / cdiv 11918  cn 12264  0cn0 12524  ...cfz 13544  chash 14366  Σcsu 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720
This theorem is referenced by:  stoweidlem44  46000
  Copyright terms: Public domain W3C validator