Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem38 Structured version   Visualization version   GIF version

Theorem stoweidlem38 46053
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem38.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem38.2 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem38.3 (𝜑𝑀 ∈ ℕ)
stoweidlem38.4 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem38.5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem38 ((𝜑𝑆𝑇) → (0 ≤ (𝑃𝑆) ∧ (𝑃𝑆) ≤ 1))
Distinct variable groups:   𝑓,𝑖,𝑇   𝐴,𝑓   𝑓,𝐺   𝜑,𝑓,𝑖   ,𝑖,𝑡,𝑇   𝐴,   ,𝐺,𝑡   ,𝑍   𝑖,𝑀,𝑡   𝑆,𝑖
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡,𝑖)   𝑃(𝑡,𝑓,,𝑖)   𝑄(𝑡,𝑓,,𝑖)   𝑆(𝑡,𝑓,)   𝐺(𝑖)   𝑀(𝑓,)   𝑍(𝑡,𝑓,𝑖)

Proof of Theorem stoweidlem38
StepHypRef Expression
1 stoweidlem38.3 . . . . . 6 (𝜑𝑀 ∈ ℕ)
21nnrecred 12317 . . . . 5 (𝜑 → (1 / 𝑀) ∈ ℝ)
32adantr 480 . . . 4 ((𝜑𝑆𝑇) → (1 / 𝑀) ∈ ℝ)
4 fzfid 14014 . . . . 5 ((𝜑𝑆𝑇) → (1...𝑀) ∈ Fin)
5 stoweidlem38.1 . . . . . . . 8 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
6 stoweidlem38.4 . . . . . . . 8 (𝜑𝐺:(1...𝑀)⟶𝑄)
7 stoweidlem38.5 . . . . . . . 8 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
85, 6, 7stoweidlem15 46030 . . . . . . 7 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (((𝐺𝑖)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑆) ∧ ((𝐺𝑖)‘𝑆) ≤ 1))
98simp1d 1143 . . . . . 6 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝑖)‘𝑆) ∈ ℝ)
109an32s 652 . . . . 5 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑆) ∈ ℝ)
114, 10fsumrecl 15770 . . . 4 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ∈ ℝ)
12 1red 11262 . . . . . 6 (𝜑 → 1 ∈ ℝ)
13 0le1 11786 . . . . . . 7 0 ≤ 1
1413a1i 11 . . . . . 6 (𝜑 → 0 ≤ 1)
151nnred 12281 . . . . . 6 (𝜑𝑀 ∈ ℝ)
161nngt0d 12315 . . . . . 6 (𝜑 → 0 < 𝑀)
17 divge0 12137 . . . . . 6 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (1 / 𝑀))
1812, 14, 15, 16, 17syl22anc 839 . . . . 5 (𝜑 → 0 ≤ (1 / 𝑀))
1918adantr 480 . . . 4 ((𝜑𝑆𝑇) → 0 ≤ (1 / 𝑀))
208simp2d 1144 . . . . . 6 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → 0 ≤ ((𝐺𝑖)‘𝑆))
2120an32s 652 . . . . 5 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ ((𝐺𝑖)‘𝑆))
224, 10, 21fsumge0 15831 . . . 4 ((𝜑𝑆𝑇) → 0 ≤ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))
233, 11, 19, 22mulge0d 11840 . . 3 ((𝜑𝑆𝑇) → 0 ≤ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
24 stoweidlem38.2 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
255, 24, 1, 6, 7stoweidlem30 46045 . . 3 ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
2623, 25breqtrrd 5171 . 2 ((𝜑𝑆𝑇) → 0 ≤ (𝑃𝑆))
27 1red 11262 . . . . . . 7 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 1 ∈ ℝ)
288simp3d 1145 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝑖)‘𝑆) ≤ 1)
2928an32s 652 . . . . . . 7 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑆) ≤ 1)
304, 10, 27, 29fsumle 15835 . . . . . 6 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ Σ𝑖 ∈ (1...𝑀)1)
31 fzfid 14014 . . . . . . . . 9 (𝜑 → (1...𝑀) ∈ Fin)
32 ax-1cn 11213 . . . . . . . . 9 1 ∈ ℂ
33 fsumconst 15826 . . . . . . . . 9 (((1...𝑀) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑖 ∈ (1...𝑀)1 = ((♯‘(1...𝑀)) · 1))
3431, 32, 33sylancl 586 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (1...𝑀)1 = ((♯‘(1...𝑀)) · 1))
351nnnn0d 12587 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
36 hashfz1 14385 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
3735, 36syl 17 . . . . . . . . 9 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
3837oveq1d 7446 . . . . . . . 8 (𝜑 → ((♯‘(1...𝑀)) · 1) = (𝑀 · 1))
391nncnd 12282 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
4039mulridd 11278 . . . . . . . 8 (𝜑 → (𝑀 · 1) = 𝑀)
4134, 38, 403eqtrd 2781 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...𝑀)1 = 𝑀)
4241adantr 480 . . . . . 6 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)1 = 𝑀)
4330, 42breqtrd 5169 . . . . 5 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ 𝑀)
4415adantr 480 . . . . . 6 ((𝜑𝑆𝑇) → 𝑀 ∈ ℝ)
45 1red 11262 . . . . . . 7 ((𝜑𝑆𝑇) → 1 ∈ ℝ)
46 0lt1 11785 . . . . . . . 8 0 < 1
4746a1i 11 . . . . . . 7 ((𝜑𝑆𝑇) → 0 < 1)
4815, 16jca 511 . . . . . . . 8 (𝜑 → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
4948adantr 480 . . . . . . 7 ((𝜑𝑆𝑇) → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
50 divgt0 12136 . . . . . . 7 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 < (1 / 𝑀))
5145, 47, 49, 50syl21anc 838 . . . . . 6 ((𝜑𝑆𝑇) → 0 < (1 / 𝑀))
52 lemul2 12120 . . . . . 6 ((Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ((1 / 𝑀) ∈ ℝ ∧ 0 < (1 / 𝑀))) → (Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ 𝑀 ↔ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)) ≤ ((1 / 𝑀) · 𝑀)))
5311, 44, 3, 51, 52syl112anc 1376 . . . . 5 ((𝜑𝑆𝑇) → (Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ 𝑀 ↔ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)) ≤ ((1 / 𝑀) · 𝑀)))
5443, 53mpbid 232 . . . 4 ((𝜑𝑆𝑇) → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)) ≤ ((1 / 𝑀) · 𝑀))
5525, 54eqbrtrd 5165 . . 3 ((𝜑𝑆𝑇) → (𝑃𝑆) ≤ ((1 / 𝑀) · 𝑀))
5632a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℂ)
571nnne0d 12316 . . . . . 6 (𝜑𝑀 ≠ 0)
5856, 39, 573jca 1129 . . . . 5 (𝜑 → (1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
5958adantr 480 . . . 4 ((𝜑𝑆𝑇) → (1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
60 divcan1 11931 . . . 4 ((1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) → ((1 / 𝑀) · 𝑀) = 1)
6159, 60syl 17 . . 3 ((𝜑𝑆𝑇) → ((1 / 𝑀) · 𝑀) = 1)
6255, 61breqtrd 5169 . 2 ((𝜑𝑆𝑇) → (𝑃𝑆) ≤ 1)
6326, 62jca 511 1 ((𝜑𝑆𝑇) → (0 ≤ (𝑃𝑆) ∧ (𝑃𝑆) ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  cle 11296   / cdiv 11920  cn 12266  0cn0 12526  ...cfz 13547  chash 14369  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723
This theorem is referenced by:  stoweidlem44  46059
  Copyright terms: Public domain W3C validator