Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idfusubc | Structured version Visualization version GIF version |
Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020.) |
Ref | Expression |
---|---|
idfusubc.s | ⊢ 𝑆 = (𝐶 ↾cat 𝐽) |
idfusubc.i | ⊢ 𝐼 = (idfunc‘𝑆) |
idfusubc.b | ⊢ 𝐵 = (Base‘𝑆) |
Ref | Expression |
---|---|
idfusubc | ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idfusubc.s | . . 3 ⊢ 𝑆 = (𝐶 ↾cat 𝐽) | |
2 | idfusubc.i | . . 3 ⊢ 𝐼 = (idfunc‘𝑆) | |
3 | idfusubc.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
4 | 1, 2, 3 | idfusubc0 45375 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) |
5 | eqid 2739 | . . . . . . . 8 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
6 | subcrcl 17509 | . . . . . . . 8 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) | |
7 | id 22 | . . . . . . . . 9 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐽 ∈ (Subcat‘𝐶)) | |
8 | eqidd 2740 | . . . . . . . . 9 ⊢ (𝐽 ∈ (Subcat‘𝐶) → dom dom 𝐽 = dom dom 𝐽) | |
9 | 7, 8 | subcfn 17537 | . . . . . . . 8 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
10 | 7, 9, 5 | subcss1 17538 | . . . . . . . 8 ⊢ (𝐽 ∈ (Subcat‘𝐶) → dom dom 𝐽 ⊆ (Base‘𝐶)) |
11 | 1, 5, 6, 9, 10 | reschom 17524 | . . . . . . 7 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐽 = (Hom ‘𝑆)) |
12 | 11 | eqcomd 2745 | . . . . . 6 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (Hom ‘𝑆) = 𝐽) |
13 | 12 | oveqd 7285 | . . . . 5 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (𝑥(Hom ‘𝑆)𝑦) = (𝑥𝐽𝑦)) |
14 | 13 | reseq2d 5888 | . . . 4 ⊢ (𝐽 ∈ (Subcat‘𝐶) → ( I ↾ (𝑥(Hom ‘𝑆)𝑦)) = ( I ↾ (𝑥𝐽𝑦))) |
15 | 14 | mpoeq3dv 7345 | . . 3 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))) |
16 | 15 | opeq2d 4816 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
17 | 4, 16 | eqtrd 2779 | 1 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 〈cop 4572 I cid 5487 dom cdm 5588 ↾ cres 5590 ‘cfv 6430 (class class class)co 7268 ∈ cmpo 7270 Basecbs 16893 Hom chom 16954 Catccat 17354 ↾cat cresc 17501 Subcatcsubc 17502 idfunccidfu 17551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-pm 8592 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-hom 16967 df-cco 16968 df-cat 17358 df-cid 17359 df-homf 17360 df-ssc 17503 df-resc 17504 df-subc 17505 df-idfu 17555 |
This theorem is referenced by: inclfusubc 45377 |
Copyright terms: Public domain | W3C validator |