| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idfusubc | Structured version Visualization version GIF version | ||
| Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020.) |
| Ref | Expression |
|---|---|
| idfusubc.s | ⊢ 𝑆 = (𝐶 ↾cat 𝐽) |
| idfusubc.i | ⊢ 𝐼 = (idfunc‘𝑆) |
| idfusubc.b | ⊢ 𝐵 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| idfusubc | ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfusubc.s | . . 3 ⊢ 𝑆 = (𝐶 ↾cat 𝐽) | |
| 2 | idfusubc.i | . . 3 ⊢ 𝐼 = (idfunc‘𝑆) | |
| 3 | idfusubc.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 4 | 1, 2, 3 | idfusubc0 17917 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) |
| 5 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 6 | subcrcl 17834 | . . . . . . . 8 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) | |
| 7 | id 22 | . . . . . . . . 9 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐽 ∈ (Subcat‘𝐶)) | |
| 8 | eqidd 2737 | . . . . . . . . 9 ⊢ (𝐽 ∈ (Subcat‘𝐶) → dom dom 𝐽 = dom dom 𝐽) | |
| 9 | 7, 8 | subcfn 17859 | . . . . . . . 8 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
| 10 | 7, 9, 5 | subcss1 17860 | . . . . . . . 8 ⊢ (𝐽 ∈ (Subcat‘𝐶) → dom dom 𝐽 ⊆ (Base‘𝐶)) |
| 11 | 1, 5, 6, 9, 10 | reschom 17848 | . . . . . . 7 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐽 = (Hom ‘𝑆)) |
| 12 | 11 | eqcomd 2742 | . . . . . 6 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (Hom ‘𝑆) = 𝐽) |
| 13 | 12 | oveqd 7427 | . . . . 5 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (𝑥(Hom ‘𝑆)𝑦) = (𝑥𝐽𝑦)) |
| 14 | 13 | reseq2d 5971 | . . . 4 ⊢ (𝐽 ∈ (Subcat‘𝐶) → ( I ↾ (𝑥(Hom ‘𝑆)𝑦)) = ( I ↾ (𝑥𝐽𝑦))) |
| 15 | 14 | mpoeq3dv 7491 | . . 3 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))) |
| 16 | 15 | opeq2d 4861 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
| 17 | 4, 16 | eqtrd 2771 | 1 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4612 I cid 5552 dom cdm 5659 ↾ cres 5661 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 Basecbs 17233 Hom chom 17287 Catccat 17681 ↾cat cresc 17826 Subcatcsubc 17827 idfunccidfu 17873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-hom 17300 df-cco 17301 df-cat 17685 df-cid 17686 df-homf 17687 df-ssc 17828 df-resc 17829 df-subc 17830 df-idfu 17877 |
| This theorem is referenced by: inclfusubc 17961 |
| Copyright terms: Public domain | W3C validator |