| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idfusubc | Structured version Visualization version GIF version | ||
| Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020.) |
| Ref | Expression |
|---|---|
| idfusubc.s | ⊢ 𝑆 = (𝐶 ↾cat 𝐽) |
| idfusubc.i | ⊢ 𝐼 = (idfunc‘𝑆) |
| idfusubc.b | ⊢ 𝐵 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| idfusubc | ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfusubc.s | . . 3 ⊢ 𝑆 = (𝐶 ↾cat 𝐽) | |
| 2 | idfusubc.i | . . 3 ⊢ 𝐼 = (idfunc‘𝑆) | |
| 3 | idfusubc.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 4 | 1, 2, 3 | idfusubc0 17868 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) |
| 5 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 6 | subcrcl 17785 | . . . . . . . 8 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) | |
| 7 | id 22 | . . . . . . . . 9 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐽 ∈ (Subcat‘𝐶)) | |
| 8 | eqidd 2731 | . . . . . . . . 9 ⊢ (𝐽 ∈ (Subcat‘𝐶) → dom dom 𝐽 = dom dom 𝐽) | |
| 9 | 7, 8 | subcfn 17810 | . . . . . . . 8 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
| 10 | 7, 9, 5 | subcss1 17811 | . . . . . . . 8 ⊢ (𝐽 ∈ (Subcat‘𝐶) → dom dom 𝐽 ⊆ (Base‘𝐶)) |
| 11 | 1, 5, 6, 9, 10 | reschom 17799 | . . . . . . 7 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐽 = (Hom ‘𝑆)) |
| 12 | 11 | eqcomd 2736 | . . . . . 6 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (Hom ‘𝑆) = 𝐽) |
| 13 | 12 | oveqd 7407 | . . . . 5 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (𝑥(Hom ‘𝑆)𝑦) = (𝑥𝐽𝑦)) |
| 14 | 13 | reseq2d 5953 | . . . 4 ⊢ (𝐽 ∈ (Subcat‘𝐶) → ( I ↾ (𝑥(Hom ‘𝑆)𝑦)) = ( I ↾ (𝑥𝐽𝑦))) |
| 15 | 14 | mpoeq3dv 7471 | . . 3 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))) |
| 16 | 15 | opeq2d 4847 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
| 17 | 4, 16 | eqtrd 2765 | 1 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4598 I cid 5535 dom cdm 5641 ↾ cres 5643 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 Basecbs 17186 Hom chom 17238 Catccat 17632 ↾cat cresc 17777 Subcatcsubc 17778 idfunccidfu 17824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-hom 17251 df-cco 17252 df-cat 17636 df-cid 17637 df-homf 17638 df-ssc 17779 df-resc 17780 df-subc 17781 df-idfu 17828 |
| This theorem is referenced by: inclfusubc 17912 |
| Copyright terms: Public domain | W3C validator |