Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idfusubc | Structured version Visualization version GIF version |
Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020.) |
Ref | Expression |
---|---|
idfusubc.s | ⊢ 𝑆 = (𝐶 ↾cat 𝐽) |
idfusubc.i | ⊢ 𝐼 = (idfunc‘𝑆) |
idfusubc.b | ⊢ 𝐵 = (Base‘𝑆) |
Ref | Expression |
---|---|
idfusubc | ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idfusubc.s | . . 3 ⊢ 𝑆 = (𝐶 ↾cat 𝐽) | |
2 | idfusubc.i | . . 3 ⊢ 𝐼 = (idfunc‘𝑆) | |
3 | idfusubc.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
4 | 1, 2, 3 | idfusubc0 45667 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) |
5 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
6 | subcrcl 17577 | . . . . . . . 8 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) | |
7 | id 22 | . . . . . . . . 9 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐽 ∈ (Subcat‘𝐶)) | |
8 | eqidd 2737 | . . . . . . . . 9 ⊢ (𝐽 ∈ (Subcat‘𝐶) → dom dom 𝐽 = dom dom 𝐽) | |
9 | 7, 8 | subcfn 17605 | . . . . . . . 8 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
10 | 7, 9, 5 | subcss1 17606 | . . . . . . . 8 ⊢ (𝐽 ∈ (Subcat‘𝐶) → dom dom 𝐽 ⊆ (Base‘𝐶)) |
11 | 1, 5, 6, 9, 10 | reschom 17592 | . . . . . . 7 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐽 = (Hom ‘𝑆)) |
12 | 11 | eqcomd 2742 | . . . . . 6 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (Hom ‘𝑆) = 𝐽) |
13 | 12 | oveqd 7324 | . . . . 5 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (𝑥(Hom ‘𝑆)𝑦) = (𝑥𝐽𝑦)) |
14 | 13 | reseq2d 5903 | . . . 4 ⊢ (𝐽 ∈ (Subcat‘𝐶) → ( I ↾ (𝑥(Hom ‘𝑆)𝑦)) = ( I ↾ (𝑥𝐽𝑦))) |
15 | 14 | mpoeq3dv 7386 | . . 3 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))) |
16 | 15 | opeq2d 4816 | . 2 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
17 | 4, 16 | eqtrd 2776 | 1 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 〈cop 4571 I cid 5499 dom cdm 5600 ↾ cres 5602 ‘cfv 6458 (class class class)co 7307 ∈ cmpo 7309 Basecbs 16961 Hom chom 17022 Catccat 17422 ↾cat cresc 17569 Subcatcsubc 17570 idfunccidfu 17619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3331 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 df-hom 17035 df-cco 17036 df-cat 17426 df-cid 17427 df-homf 17428 df-ssc 17571 df-resc 17572 df-subc 17573 df-idfu 17623 |
This theorem is referenced by: inclfusubc 45669 |
Copyright terms: Public domain | W3C validator |