MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcidcl Structured version   Visualization version   GIF version

Theorem subcidcl 17895
Description: The identity of the original category is contained in each subcategory. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
subcidcl.j (𝜑𝐽 ∈ (Subcat‘𝐶))
subcidcl.2 (𝜑𝐽 Fn (𝑆 × 𝑆))
subcidcl.x (𝜑𝑋𝑆)
subcidcl.1 1 = (Id‘𝐶)
Assertion
Ref Expression
subcidcl (𝜑 → ( 1𝑋) ∈ (𝑋𝐽𝑋))

Proof of Theorem subcidcl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . 3 (𝑥 = 𝑋 → ( 1𝑥) = ( 1𝑋))
2 id 22 . . . 4 (𝑥 = 𝑋𝑥 = 𝑋)
32, 2oveq12d 7449 . . 3 (𝑥 = 𝑋 → (𝑥𝐽𝑥) = (𝑋𝐽𝑋))
41, 3eleq12d 2833 . 2 (𝑥 = 𝑋 → (( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ( 1𝑋) ∈ (𝑋𝐽𝑋)))
5 subcidcl.j . . . 4 (𝜑𝐽 ∈ (Subcat‘𝐶))
6 eqid 2735 . . . . 5 (Homf𝐶) = (Homf𝐶)
7 subcidcl.1 . . . . 5 1 = (Id‘𝐶)
8 eqid 2735 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
9 subcrcl 17864 . . . . . 6 (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
105, 9syl 17 . . . . 5 (𝜑𝐶 ∈ Cat)
11 subcidcl.2 . . . . 5 (𝜑𝐽 Fn (𝑆 × 𝑆))
126, 7, 8, 10, 11issubc2 17887 . . . 4 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat (Homf𝐶) ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
135, 12mpbid 232 . . 3 (𝜑 → (𝐽cat (Homf𝐶) ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
14 simpl 482 . . . 4 ((( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → ( 1𝑥) ∈ (𝑥𝐽𝑥))
1514ralimi 3081 . . 3 (∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
1613, 15simpl2im 503 . 2 (𝜑 → ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
17 subcidcl.x . 2 (𝜑𝑋𝑆)
184, 16, 17rspcdva 3623 1 (𝜑 → ( 1𝑋) ∈ (𝑋𝐽𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  cop 4637   class class class wbr 5148   × cxp 5687   Fn wfn 6558  cfv 6563  (class class class)co 7431  compcco 17310  Catccat 17709  Idccid 17710  Homf chomf 17711  cat cssc 17855  Subcatcsubc 17857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-pm 8868  df-ixp 8937  df-ssc 17858  df-subc 17860
This theorem is referenced by:  subccatid  17897  issubc3  17900  funcres  17947
  Copyright terms: Public domain W3C validator