Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subcidcl | Structured version Visualization version GIF version |
Description: The identity of the original category is contained in each subcategory. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
subcidcl.j | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
subcidcl.2 | ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
subcidcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
subcidcl.1 | ⊢ 1 = (Id‘𝐶) |
Ref | Expression |
---|---|
subcidcl | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐽𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . 3 ⊢ (𝑥 = 𝑋 → ( 1 ‘𝑥) = ( 1 ‘𝑋)) | |
2 | id 22 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
3 | 2, 2 | oveq12d 7293 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑥𝐽𝑥) = (𝑋𝐽𝑋)) |
4 | 1, 3 | eleq12d 2833 | . 2 ⊢ (𝑥 = 𝑋 → (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ( 1 ‘𝑋) ∈ (𝑋𝐽𝑋))) |
5 | subcidcl.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
6 | eqid 2738 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
7 | subcidcl.1 | . . . . 5 ⊢ 1 = (Id‘𝐶) | |
8 | eqid 2738 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
9 | subcrcl 17528 | . . . . . 6 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) | |
10 | 5, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
11 | subcidcl.2 | . . . . 5 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) | |
12 | 6, 7, 8, 10, 11 | issubc2 17551 | . . . 4 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
13 | 5, 12 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐽 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) |
14 | simpl 483 | . . . 4 ⊢ ((( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) | |
15 | 14 | ralimi 3087 | . . 3 ⊢ (∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
16 | 13, 15 | simpl2im 504 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
17 | subcidcl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
18 | 4, 16, 17 | rspcdva 3562 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐽𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 〈cop 4567 class class class wbr 5074 × cxp 5587 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 compcco 16974 Catccat 17373 Idccid 17374 Homf chomf 17375 ⊆cat cssc 17519 Subcatcsubc 17521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-pm 8618 df-ixp 8686 df-ssc 17522 df-subc 17524 |
This theorem is referenced by: subccatid 17561 issubc3 17564 funcres 17611 |
Copyright terms: Public domain | W3C validator |