MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcidcl Structured version   Visualization version   GIF version

Theorem subcidcl 17798
Description: The identity of the original category is contained in each subcategory. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
subcidcl.j (πœ‘ β†’ 𝐽 ∈ (Subcatβ€˜πΆ))
subcidcl.2 (πœ‘ β†’ 𝐽 Fn (𝑆 Γ— 𝑆))
subcidcl.x (πœ‘ β†’ 𝑋 ∈ 𝑆)
subcidcl.1 1 = (Idβ€˜πΆ)
Assertion
Ref Expression
subcidcl (πœ‘ β†’ ( 1 β€˜π‘‹) ∈ (𝑋𝐽𝑋))

Proof of Theorem subcidcl
Dummy variables 𝑓 𝑔 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . 3 (π‘₯ = 𝑋 β†’ ( 1 β€˜π‘₯) = ( 1 β€˜π‘‹))
2 id 22 . . . 4 (π‘₯ = 𝑋 β†’ π‘₯ = 𝑋)
32, 2oveq12d 7429 . . 3 (π‘₯ = 𝑋 β†’ (π‘₯𝐽π‘₯) = (𝑋𝐽𝑋))
41, 3eleq12d 2827 . 2 (π‘₯ = 𝑋 β†’ (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ↔ ( 1 β€˜π‘‹) ∈ (𝑋𝐽𝑋)))
5 subcidcl.j . . . 4 (πœ‘ β†’ 𝐽 ∈ (Subcatβ€˜πΆ))
6 eqid 2732 . . . . 5 (Homf β€˜πΆ) = (Homf β€˜πΆ)
7 subcidcl.1 . . . . 5 1 = (Idβ€˜πΆ)
8 eqid 2732 . . . . 5 (compβ€˜πΆ) = (compβ€˜πΆ)
9 subcrcl 17767 . . . . . 6 (𝐽 ∈ (Subcatβ€˜πΆ) β†’ 𝐢 ∈ Cat)
105, 9syl 17 . . . . 5 (πœ‘ β†’ 𝐢 ∈ Cat)
11 subcidcl.2 . . . . 5 (πœ‘ β†’ 𝐽 Fn (𝑆 Γ— 𝑆))
126, 7, 8, 10, 11issubc2 17790 . . . 4 (πœ‘ β†’ (𝐽 ∈ (Subcatβ€˜πΆ) ↔ (𝐽 βŠ†cat (Homf β€˜πΆ) ∧ βˆ€π‘₯ ∈ 𝑆 (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧)𝑓) ∈ (π‘₯𝐽𝑧)))))
135, 12mpbid 231 . . 3 (πœ‘ β†’ (𝐽 βŠ†cat (Homf β€˜πΆ) ∧ βˆ€π‘₯ ∈ 𝑆 (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧)𝑓) ∈ (π‘₯𝐽𝑧))))
14 simpl 483 . . . 4 ((( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧)𝑓) ∈ (π‘₯𝐽𝑧)) β†’ ( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯))
1514ralimi 3083 . . 3 (βˆ€π‘₯ ∈ 𝑆 (( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯) ∧ βˆ€π‘¦ ∈ 𝑆 βˆ€π‘§ ∈ 𝑆 βˆ€π‘“ ∈ (π‘₯𝐽𝑦)βˆ€π‘” ∈ (𝑦𝐽𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧)𝑓) ∈ (π‘₯𝐽𝑧)) β†’ βˆ€π‘₯ ∈ 𝑆 ( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯))
1613, 15simpl2im 504 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑆 ( 1 β€˜π‘₯) ∈ (π‘₯𝐽π‘₯))
17 subcidcl.x . 2 (πœ‘ β†’ 𝑋 ∈ 𝑆)
184, 16, 17rspcdva 3613 1 (πœ‘ β†’ ( 1 β€˜π‘‹) ∈ (𝑋𝐽𝑋))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βŸ¨cop 4634   class class class wbr 5148   Γ— cxp 5674   Fn wfn 6538  β€˜cfv 6543  (class class class)co 7411  compcco 17213  Catccat 17612  Idccid 17613  Homf chomf 17614   βŠ†cat cssc 17758  Subcatcsubc 17760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-pm 8825  df-ixp 8894  df-ssc 17761  df-subc 17763
This theorem is referenced by:  subccatid  17800  issubc3  17803  funcres  17850
  Copyright terms: Public domain W3C validator