Step | Hyp | Ref
| Expression |
1 | | fveq2 6891 |
. . 3
β’ (π₯ = π β ( 1 βπ₯) = ( 1 βπ)) |
2 | | id 22 |
. . . 4
β’ (π₯ = π β π₯ = π) |
3 | 2, 2 | oveq12d 7429 |
. . 3
β’ (π₯ = π β (π₯π½π₯) = (ππ½π)) |
4 | 1, 3 | eleq12d 2827 |
. 2
β’ (π₯ = π β (( 1 βπ₯) β (π₯π½π₯) β ( 1 βπ) β (ππ½π))) |
5 | | subcidcl.j |
. . . 4
β’ (π β π½ β (SubcatβπΆ)) |
6 | | eqid 2732 |
. . . . 5
β’
(Homf βπΆ) = (Homf βπΆ) |
7 | | subcidcl.1 |
. . . . 5
β’ 1 =
(IdβπΆ) |
8 | | eqid 2732 |
. . . . 5
β’
(compβπΆ) =
(compβπΆ) |
9 | | subcrcl 17767 |
. . . . . 6
β’ (π½ β (SubcatβπΆ) β πΆ β Cat) |
10 | 5, 9 | syl 17 |
. . . . 5
β’ (π β πΆ β Cat) |
11 | | subcidcl.2 |
. . . . 5
β’ (π β π½ Fn (π Γ π)) |
12 | 6, 7, 8, 10, 11 | issubc2 17790 |
. . . 4
β’ (π β (π½ β (SubcatβπΆ) β (π½ βcat
(Homf βπΆ) β§ βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β©(compβπΆ)π§)π) β (π₯π½π§))))) |
13 | 5, 12 | mpbid 231 |
. . 3
β’ (π β (π½ βcat
(Homf βπΆ) β§ βπ₯ β π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β©(compβπΆ)π§)π) β (π₯π½π§)))) |
14 | | simpl 483 |
. . . 4
β’ ((( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β©(compβπΆ)π§)π) β (π₯π½π§)) β ( 1 βπ₯) β (π₯π½π₯)) |
15 | 14 | ralimi 3083 |
. . 3
β’
(βπ₯ β
π (( 1 βπ₯) β (π₯π½π₯) β§ βπ¦ β π βπ§ β π βπ β (π₯π½π¦)βπ β (π¦π½π§)(π(β¨π₯, π¦β©(compβπΆ)π§)π) β (π₯π½π§)) β βπ₯ β π ( 1 βπ₯) β (π₯π½π₯)) |
16 | 13, 15 | simpl2im 504 |
. 2
β’ (π β βπ₯ β π ( 1 βπ₯) β (π₯π½π₯)) |
17 | | subcidcl.x |
. 2
β’ (π β π β π) |
18 | 4, 16, 17 | rspcdva 3613 |
1
β’ (π β ( 1 βπ) β (ππ½π)) |