| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subcidcl | Structured version Visualization version GIF version | ||
| Description: The identity of the original category is contained in each subcategory. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| subcidcl.j | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| subcidcl.2 | ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| subcidcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| subcidcl.1 | ⊢ 1 = (Id‘𝐶) |
| Ref | Expression |
|---|---|
| subcidcl | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐽𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . 3 ⊢ (𝑥 = 𝑋 → ( 1 ‘𝑥) = ( 1 ‘𝑋)) | |
| 2 | id 22 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 3 | 2, 2 | oveq12d 7367 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑥𝐽𝑥) = (𝑋𝐽𝑋)) |
| 4 | 1, 3 | eleq12d 2822 | . 2 ⊢ (𝑥 = 𝑋 → (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ( 1 ‘𝑋) ∈ (𝑋𝐽𝑋))) |
| 5 | subcidcl.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 7 | subcidcl.1 | . . . . 5 ⊢ 1 = (Id‘𝐶) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 9 | subcrcl 17723 | . . . . . 6 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) | |
| 10 | 5, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 11 | subcidcl.2 | . . . . 5 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) | |
| 12 | 6, 7, 8, 10, 11 | issubc2 17743 | . . . 4 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| 13 | 5, 12 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐽 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) |
| 14 | simpl 482 | . . . 4 ⊢ ((( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) | |
| 15 | 14 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
| 16 | 13, 15 | simpl2im 503 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
| 17 | subcidcl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 18 | 4, 16, 17 | rspcdva 3578 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐽𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 〈cop 4583 class class class wbr 5092 × cxp 5617 Fn wfn 6477 ‘cfv 6482 (class class class)co 7349 compcco 17173 Catccat 17570 Idccid 17571 Homf chomf 17572 ⊆cat cssc 17714 Subcatcsubc 17716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-pm 8756 df-ixp 8825 df-ssc 17717 df-subc 17719 |
| This theorem is referenced by: subccatid 17753 issubc3 17756 funcres 17803 iinfsubc 49047 iinfconstbas 49055 |
| Copyright terms: Public domain | W3C validator |