MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcidcl Structured version   Visualization version   GIF version

Theorem subcidcl 17812
Description: The identity of the original category is contained in each subcategory. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
subcidcl.j (𝜑𝐽 ∈ (Subcat‘𝐶))
subcidcl.2 (𝜑𝐽 Fn (𝑆 × 𝑆))
subcidcl.x (𝜑𝑋𝑆)
subcidcl.1 1 = (Id‘𝐶)
Assertion
Ref Expression
subcidcl (𝜑 → ( 1𝑋) ∈ (𝑋𝐽𝑋))

Proof of Theorem subcidcl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6865 . . 3 (𝑥 = 𝑋 → ( 1𝑥) = ( 1𝑋))
2 id 22 . . . 4 (𝑥 = 𝑋𝑥 = 𝑋)
32, 2oveq12d 7412 . . 3 (𝑥 = 𝑋 → (𝑥𝐽𝑥) = (𝑋𝐽𝑋))
41, 3eleq12d 2823 . 2 (𝑥 = 𝑋 → (( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ( 1𝑋) ∈ (𝑋𝐽𝑋)))
5 subcidcl.j . . . 4 (𝜑𝐽 ∈ (Subcat‘𝐶))
6 eqid 2730 . . . . 5 (Homf𝐶) = (Homf𝐶)
7 subcidcl.1 . . . . 5 1 = (Id‘𝐶)
8 eqid 2730 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
9 subcrcl 17784 . . . . . 6 (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
105, 9syl 17 . . . . 5 (𝜑𝐶 ∈ Cat)
11 subcidcl.2 . . . . 5 (𝜑𝐽 Fn (𝑆 × 𝑆))
126, 7, 8, 10, 11issubc2 17804 . . . 4 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat (Homf𝐶) ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
135, 12mpbid 232 . . 3 (𝜑 → (𝐽cat (Homf𝐶) ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
14 simpl 482 . . . 4 ((( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → ( 1𝑥) ∈ (𝑥𝐽𝑥))
1514ralimi 3068 . . 3 (∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
1613, 15simpl2im 503 . 2 (𝜑 → ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
17 subcidcl.x . 2 (𝜑𝑋𝑆)
184, 16, 17rspcdva 3598 1 (𝜑 → ( 1𝑋) ∈ (𝑋𝐽𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3046  cop 4603   class class class wbr 5115   × cxp 5644   Fn wfn 6514  cfv 6519  (class class class)co 7394  compcco 17238  Catccat 17631  Idccid 17632  Homf chomf 17633  cat cssc 17775  Subcatcsubc 17777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-pm 8806  df-ixp 8875  df-ssc 17778  df-subc 17780
This theorem is referenced by:  subccatid  17814  issubc3  17817  funcres  17864  iinfsubc  48975  iinfconstbas  48983
  Copyright terms: Public domain W3C validator