![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subcidcl | Structured version Visualization version GIF version |
Description: The identity of the original category is contained in each subcategory. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
subcidcl.j | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
subcidcl.2 | ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
subcidcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
subcidcl.1 | ⊢ 1 = (Id‘𝐶) |
Ref | Expression |
---|---|
subcidcl | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐽𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . 3 ⊢ (𝑥 = 𝑋 → ( 1 ‘𝑥) = ( 1 ‘𝑋)) | |
2 | id 22 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
3 | 2, 2 | oveq12d 7466 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑥𝐽𝑥) = (𝑋𝐽𝑋)) |
4 | 1, 3 | eleq12d 2838 | . 2 ⊢ (𝑥 = 𝑋 → (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ( 1 ‘𝑋) ∈ (𝑋𝐽𝑋))) |
5 | subcidcl.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
6 | eqid 2740 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
7 | subcidcl.1 | . . . . 5 ⊢ 1 = (Id‘𝐶) | |
8 | eqid 2740 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
9 | subcrcl 17877 | . . . . . 6 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) | |
10 | 5, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
11 | subcidcl.2 | . . . . 5 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) | |
12 | 6, 7, 8, 10, 11 | issubc2 17900 | . . . 4 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
13 | 5, 12 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐽 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) |
14 | simpl 482 | . . . 4 ⊢ ((( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) | |
15 | 14 | ralimi 3089 | . . 3 ⊢ (∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
16 | 13, 15 | simpl2im 503 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
17 | subcidcl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
18 | 4, 16, 17 | rspcdva 3636 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐽𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 〈cop 4654 class class class wbr 5166 × cxp 5698 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 compcco 17323 Catccat 17722 Idccid 17723 Homf chomf 17724 ⊆cat cssc 17868 Subcatcsubc 17870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-pm 8887 df-ixp 8956 df-ssc 17871 df-subc 17873 |
This theorem is referenced by: subccatid 17910 issubc3 17913 funcres 17960 |
Copyright terms: Public domain | W3C validator |