![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subcssc | Structured version Visualization version GIF version |
Description: An element in the set of subcategories is a subset of the category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
subcixp.1 | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
subcssc.h | ⊢ 𝐻 = (Homf ‘𝐶) |
Ref | Expression |
---|---|
subcssc | ⊢ (𝜑 → 𝐽 ⊆cat 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcixp.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
2 | subcssc.h | . . . 4 ⊢ 𝐻 = (Homf ‘𝐶) | |
3 | eqid 2735 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
4 | eqid 2735 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
5 | subcrcl 17864 | . . . . 5 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) | |
6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | eqidd 2736 | . . . 4 ⊢ (𝜑 → dom dom 𝐽 = dom dom 𝐽) | |
8 | 2, 3, 4, 6, 7 | issubc 17886 | . . 3 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐽(((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ dom dom 𝐽∀𝑧 ∈ dom dom 𝐽∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
9 | 1, 8 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐽(((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ dom dom 𝐽∀𝑧 ∈ dom dom 𝐽∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) |
10 | 9 | simpld 494 | 1 ⊢ (𝜑 → 𝐽 ⊆cat 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 〈cop 4637 class class class wbr 5148 dom cdm 5689 ‘cfv 6563 (class class class)co 7431 compcco 17310 Catccat 17709 Idccid 17710 Homf chomf 17711 ⊆cat cssc 17855 Subcatcsubc 17857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-pm 8868 df-ixp 8937 df-ssc 17858 df-subc 17860 |
This theorem is referenced by: subcfn 17892 subcss1 17893 subcss2 17894 issubc3 17900 subsubc 17904 |
Copyright terms: Public domain | W3C validator |