MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcssc Structured version   Visualization version   GIF version

Theorem subcssc 17555
Description: An element in the set of subcategories is a subset of the category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
subcixp.1 (𝜑𝐽 ∈ (Subcat‘𝐶))
subcssc.h 𝐻 = (Homf𝐶)
Assertion
Ref Expression
subcssc (𝜑𝐽cat 𝐻)

Proof of Theorem subcssc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subcixp.1 . . 3 (𝜑𝐽 ∈ (Subcat‘𝐶))
2 subcssc.h . . . 4 𝐻 = (Homf𝐶)
3 eqid 2738 . . . 4 (Id‘𝐶) = (Id‘𝐶)
4 eqid 2738 . . . 4 (comp‘𝐶) = (comp‘𝐶)
5 subcrcl 17528 . . . . 5 (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
61, 5syl 17 . . . 4 (𝜑𝐶 ∈ Cat)
7 eqidd 2739 . . . 4 (𝜑 → dom dom 𝐽 = dom dom 𝐽)
82, 3, 4, 6, 7issubc 17550 . . 3 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐽(((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ dom dom 𝐽𝑧 ∈ dom dom 𝐽𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
91, 8mpbid 231 . 2 (𝜑 → (𝐽cat 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐽(((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ dom dom 𝐽𝑧 ∈ dom dom 𝐽𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
109simpld 495 1 (𝜑𝐽cat 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  cop 4567   class class class wbr 5074  dom cdm 5589  cfv 6433  (class class class)co 7275  compcco 16974  Catccat 17373  Idccid 17374  Homf chomf 17375  cat cssc 17519  Subcatcsubc 17521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-pm 8618  df-ixp 8686  df-ssc 17522  df-subc 17524
This theorem is referenced by:  subcfn  17556  subcss1  17557  subcss2  17558  issubc3  17564  subsubc  17568
  Copyright terms: Public domain W3C validator