MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcssc Structured version   Visualization version   GIF version

Theorem subcssc 17853
Description: An element in the set of subcategories is a subset of the category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
subcixp.1 (𝜑𝐽 ∈ (Subcat‘𝐶))
subcssc.h 𝐻 = (Homf𝐶)
Assertion
Ref Expression
subcssc (𝜑𝐽cat 𝐻)

Proof of Theorem subcssc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subcixp.1 . . 3 (𝜑𝐽 ∈ (Subcat‘𝐶))
2 subcssc.h . . . 4 𝐻 = (Homf𝐶)
3 eqid 2735 . . . 4 (Id‘𝐶) = (Id‘𝐶)
4 eqid 2735 . . . 4 (comp‘𝐶) = (comp‘𝐶)
5 subcrcl 17829 . . . . 5 (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
61, 5syl 17 . . . 4 (𝜑𝐶 ∈ Cat)
7 eqidd 2736 . . . 4 (𝜑 → dom dom 𝐽 = dom dom 𝐽)
82, 3, 4, 6, 7issubc 17848 . . 3 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐽(((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ dom dom 𝐽𝑧 ∈ dom dom 𝐽𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
91, 8mpbid 232 . 2 (𝜑 → (𝐽cat 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐽(((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ dom dom 𝐽𝑧 ∈ dom dom 𝐽𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
109simpld 494 1 (𝜑𝐽cat 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  cop 4607   class class class wbr 5119  dom cdm 5654  cfv 6531  (class class class)co 7405  compcco 17283  Catccat 17676  Idccid 17677  Homf chomf 17678  cat cssc 17820  Subcatcsubc 17822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-pm 8843  df-ixp 8912  df-ssc 17823  df-subc 17825
This theorem is referenced by:  subcfn  17854  subcss1  17855  subcss2  17856  issubc3  17862  subsubc  17866  iinfsubc  49025  infsubc2  49028  iinfconstbas  49033
  Copyright terms: Public domain W3C validator