| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subcssc | Structured version Visualization version GIF version | ||
| Description: An element in the set of subcategories is a subset of the category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| subcixp.1 | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| subcssc.h | ⊢ 𝐻 = (Homf ‘𝐶) |
| Ref | Expression |
|---|---|
| subcssc | ⊢ (𝜑 → 𝐽 ⊆cat 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcixp.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
| 2 | subcssc.h | . . . 4 ⊢ 𝐻 = (Homf ‘𝐶) | |
| 3 | eqid 2733 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 4 | eqid 2733 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 5 | subcrcl 17725 | . . . . 5 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) | |
| 6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | eqidd 2734 | . . . 4 ⊢ (𝜑 → dom dom 𝐽 = dom dom 𝐽) | |
| 8 | 2, 3, 4, 6, 7 | issubc 17744 | . . 3 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐽(((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ dom dom 𝐽∀𝑧 ∈ dom dom 𝐽∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| 9 | 1, 8 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐽(((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ dom dom 𝐽∀𝑧 ∈ dom dom 𝐽∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) |
| 10 | 9 | simpld 494 | 1 ⊢ (𝜑 → 𝐽 ⊆cat 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 〈cop 4581 class class class wbr 5093 dom cdm 5619 ‘cfv 6486 (class class class)co 7352 compcco 17175 Catccat 17572 Idccid 17573 Homf chomf 17574 ⊆cat cssc 17716 Subcatcsubc 17718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-pm 8759 df-ixp 8828 df-ssc 17719 df-subc 17721 |
| This theorem is referenced by: subcfn 17750 subcss1 17751 subcss2 17752 issubc3 17758 subsubc 17762 iinfsubc 49183 infsubc2 49186 iinfconstbas 49191 |
| Copyright terms: Public domain | W3C validator |