Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subcssc | Structured version Visualization version GIF version |
Description: An element in the set of subcategories is a subset of the category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
subcixp.1 | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
subcssc.h | ⊢ 𝐻 = (Homf ‘𝐶) |
Ref | Expression |
---|---|
subcssc | ⊢ (𝜑 → 𝐽 ⊆cat 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcixp.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
2 | subcssc.h | . . . 4 ⊢ 𝐻 = (Homf ‘𝐶) | |
3 | eqid 2758 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
4 | eqid 2758 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
5 | subcrcl 17145 | . . . . 5 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) | |
6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | eqidd 2759 | . . . 4 ⊢ (𝜑 → dom dom 𝐽 = dom dom 𝐽) | |
8 | 2, 3, 4, 6, 7 | issubc 17164 | . . 3 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐽(((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ dom dom 𝐽∀𝑧 ∈ dom dom 𝐽∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
9 | 1, 8 | mpbid 235 | . 2 ⊢ (𝜑 → (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐽(((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ dom dom 𝐽∀𝑧 ∈ dom dom 𝐽∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) |
10 | 9 | simpld 498 | 1 ⊢ (𝜑 → 𝐽 ⊆cat 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 〈cop 4528 class class class wbr 5032 dom cdm 5524 ‘cfv 6335 (class class class)co 7150 compcco 16635 Catccat 16993 Idccid 16994 Homf chomf 16995 ⊆cat cssc 17136 Subcatcsubc 17138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-pm 8419 df-ixp 8480 df-ssc 17139 df-subc 17141 |
This theorem is referenced by: subcfn 17170 subcss1 17171 subcss2 17172 issubc3 17178 subsubc 17182 |
Copyright terms: Public domain | W3C validator |