Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subcssc | Structured version Visualization version GIF version |
Description: An element in the set of subcategories is a subset of the category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
subcixp.1 | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
subcssc.h | ⊢ 𝐻 = (Homf ‘𝐶) |
Ref | Expression |
---|---|
subcssc | ⊢ (𝜑 → 𝐽 ⊆cat 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcixp.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
2 | subcssc.h | . . . 4 ⊢ 𝐻 = (Homf ‘𝐶) | |
3 | eqid 2738 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
4 | eqid 2738 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
5 | subcrcl 17445 | . . . . 5 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) | |
6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | eqidd 2739 | . . . 4 ⊢ (𝜑 → dom dom 𝐽 = dom dom 𝐽) | |
8 | 2, 3, 4, 6, 7 | issubc 17466 | . . 3 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐽(((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ dom dom 𝐽∀𝑧 ∈ dom dom 𝐽∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
9 | 1, 8 | mpbid 231 | . 2 ⊢ (𝜑 → (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐽(((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ dom dom 𝐽∀𝑧 ∈ dom dom 𝐽∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) |
10 | 9 | simpld 494 | 1 ⊢ (𝜑 → 𝐽 ⊆cat 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 〈cop 4564 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 compcco 16900 Catccat 17290 Idccid 17291 Homf chomf 17292 ⊆cat cssc 17436 Subcatcsubc 17438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-pm 8576 df-ixp 8644 df-ssc 17439 df-subc 17441 |
This theorem is referenced by: subcfn 17472 subcss1 17473 subcss2 17474 issubc3 17480 subsubc 17484 |
Copyright terms: Public domain | W3C validator |