| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subcssc | Structured version Visualization version GIF version | ||
| Description: An element in the set of subcategories is a subset of the category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| subcixp.1 | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| subcssc.h | ⊢ 𝐻 = (Homf ‘𝐶) |
| Ref | Expression |
|---|---|
| subcssc | ⊢ (𝜑 → 𝐽 ⊆cat 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcixp.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
| 2 | subcssc.h | . . . 4 ⊢ 𝐻 = (Homf ‘𝐶) | |
| 3 | eqid 2730 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 4 | eqid 2730 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 5 | subcrcl 17784 | . . . . 5 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) | |
| 6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | eqidd 2731 | . . . 4 ⊢ (𝜑 → dom dom 𝐽 = dom dom 𝐽) | |
| 8 | 2, 3, 4, 6, 7 | issubc 17803 | . . 3 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐽(((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ dom dom 𝐽∀𝑧 ∈ dom dom 𝐽∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| 9 | 1, 8 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐽(((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ dom dom 𝐽∀𝑧 ∈ dom dom 𝐽∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) |
| 10 | 9 | simpld 494 | 1 ⊢ (𝜑 → 𝐽 ⊆cat 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 〈cop 4597 class class class wbr 5109 dom cdm 5640 ‘cfv 6513 (class class class)co 7389 compcco 17238 Catccat 17631 Idccid 17632 Homf chomf 17633 ⊆cat cssc 17775 Subcatcsubc 17777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-pm 8804 df-ixp 8873 df-ssc 17778 df-subc 17780 |
| This theorem is referenced by: subcfn 17809 subcss1 17810 subcss2 17811 issubc3 17817 subsubc 17821 iinfsubc 49037 infsubc2 49040 iinfconstbas 49045 |
| Copyright terms: Public domain | W3C validator |