MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscfn1 Structured version   Visualization version   GIF version

Theorem sscfn1 17828
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
sscfn1.1 (𝜑𝐻cat 𝐽)
sscfn1.2 (𝜑𝑆 = dom dom 𝐻)
Assertion
Ref Expression
sscfn1 (𝜑𝐻 Fn (𝑆 × 𝑆))

Proof of Theorem sscfn1
Dummy variables 𝑡 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sscfn1.1 . . 3 (𝜑𝐻cat 𝐽)
2 brssc 17825 . . 3 (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
31, 2sylib 218 . 2 (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
4 ixpfn 8915 . . . . . 6 (𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 Fn (𝑠 × 𝑠))
5 simpr 484 . . . . . . . 8 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑠 × 𝑠))
6 sscfn1.2 . . . . . . . . . . . 12 (𝜑𝑆 = dom dom 𝐻)
76adantr 480 . . . . . . . . . . 11 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝑆 = dom dom 𝐻)
8 fndm 6640 . . . . . . . . . . . . . 14 (𝐻 Fn (𝑠 × 𝑠) → dom 𝐻 = (𝑠 × 𝑠))
98adantl 481 . . . . . . . . . . . . 13 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom 𝐻 = (𝑠 × 𝑠))
109dmeqd 5885 . . . . . . . . . . . 12 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = dom (𝑠 × 𝑠))
11 dmxpid 5910 . . . . . . . . . . . 12 dom (𝑠 × 𝑠) = 𝑠
1210, 11eqtrdi 2786 . . . . . . . . . . 11 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = 𝑠)
137, 12eqtr2d 2771 . . . . . . . . . 10 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝑠 = 𝑆)
1413sqxpeqd 5686 . . . . . . . . 9 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → (𝑠 × 𝑠) = (𝑆 × 𝑆))
1514fneq2d 6631 . . . . . . . 8 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → (𝐻 Fn (𝑠 × 𝑠) ↔ 𝐻 Fn (𝑆 × 𝑆)))
165, 15mpbid 232 . . . . . . 7 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑆 × 𝑆))
1716ex 412 . . . . . 6 (𝜑 → (𝐻 Fn (𝑠 × 𝑠) → 𝐻 Fn (𝑆 × 𝑆)))
184, 17syl5 34 . . . . 5 (𝜑 → (𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 Fn (𝑆 × 𝑆)))
1918rexlimdvw 3146 . . . 4 (𝜑 → (∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 Fn (𝑆 × 𝑆)))
2019adantld 490 . . 3 (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → 𝐻 Fn (𝑆 × 𝑆)))
2120exlimdv 1933 . 2 (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → 𝐻 Fn (𝑆 × 𝑆)))
223, 21mpd 15 1 (𝜑𝐻 Fn (𝑆 × 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wrex 3060  𝒫 cpw 4575   class class class wbr 5119   × cxp 5652  dom cdm 5654   Fn wfn 6525  cfv 6530  Xcixp 8909  cat cssc 17818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ixp 8910  df-ssc 17821
This theorem is referenced by:  ssctr  17836  ssceq  17837  subcfn  17852  subsubc  17864  iinfssclem1  48969  iinfssc  48972
  Copyright terms: Public domain W3C validator