Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sscfn1 | Structured version Visualization version GIF version |
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
sscfn1.1 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
sscfn1.2 | ⊢ (𝜑 → 𝑆 = dom dom 𝐻) |
Ref | Expression |
---|---|
sscfn1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sscfn1.1 | . . 3 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
2 | brssc 17526 | . . 3 ⊢ (𝐻 ⊆cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥))) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥))) |
4 | ixpfn 8691 | . . . . . 6 ⊢ (𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥) → 𝐻 Fn (𝑠 × 𝑠)) | |
5 | simpr 485 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑠 × 𝑠)) | |
6 | sscfn1.2 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑆 = dom dom 𝐻) | |
7 | 6 | adantr 481 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝑆 = dom dom 𝐻) |
8 | fndm 6536 | . . . . . . . . . . . . . 14 ⊢ (𝐻 Fn (𝑠 × 𝑠) → dom 𝐻 = (𝑠 × 𝑠)) | |
9 | 8 | adantl 482 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → dom 𝐻 = (𝑠 × 𝑠)) |
10 | 9 | dmeqd 5814 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = dom (𝑠 × 𝑠)) |
11 | dmxpid 5839 | . . . . . . . . . . . 12 ⊢ dom (𝑠 × 𝑠) = 𝑠 | |
12 | 10, 11 | eqtrdi 2794 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = 𝑠) |
13 | 7, 12 | eqtr2d 2779 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝑠 = 𝑆) |
14 | 13 | sqxpeqd 5621 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → (𝑠 × 𝑠) = (𝑆 × 𝑆)) |
15 | 14 | fneq2d 6527 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → (𝐻 Fn (𝑠 × 𝑠) ↔ 𝐻 Fn (𝑆 × 𝑆))) |
16 | 5, 15 | mpbid 231 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑆 × 𝑆)) |
17 | 16 | ex 413 | . . . . . 6 ⊢ (𝜑 → (𝐻 Fn (𝑠 × 𝑠) → 𝐻 Fn (𝑆 × 𝑆))) |
18 | 4, 17 | syl5 34 | . . . . 5 ⊢ (𝜑 → (𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥) → 𝐻 Fn (𝑆 × 𝑆))) |
19 | 18 | rexlimdvw 3219 | . . . 4 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥) → 𝐻 Fn (𝑆 × 𝑆))) |
20 | 19 | adantld 491 | . . 3 ⊢ (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥)) → 𝐻 Fn (𝑆 × 𝑆))) |
21 | 20 | exlimdv 1936 | . 2 ⊢ (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥)) → 𝐻 Fn (𝑆 × 𝑆))) |
22 | 3, 21 | mpd 15 | 1 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 𝒫 cpw 4533 class class class wbr 5074 × cxp 5587 dom cdm 5589 Fn wfn 6428 ‘cfv 6433 Xcixp 8685 ⊆cat cssc 17519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ixp 8686 df-ssc 17522 |
This theorem is referenced by: ssctr 17537 ssceq 17538 subcfn 17556 subsubc 17568 |
Copyright terms: Public domain | W3C validator |