Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sscfn1 | Structured version Visualization version GIF version |
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
sscfn1.1 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
sscfn1.2 | ⊢ (𝜑 → 𝑆 = dom dom 𝐻) |
Ref | Expression |
---|---|
sscfn1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sscfn1.1 | . . 3 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
2 | brssc 17443 | . . 3 ⊢ (𝐻 ⊆cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥))) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥))) |
4 | ixpfn 8649 | . . . . . 6 ⊢ (𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥) → 𝐻 Fn (𝑠 × 𝑠)) | |
5 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑠 × 𝑠)) | |
6 | sscfn1.2 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑆 = dom dom 𝐻) | |
7 | 6 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝑆 = dom dom 𝐻) |
8 | fndm 6520 | . . . . . . . . . . . . . 14 ⊢ (𝐻 Fn (𝑠 × 𝑠) → dom 𝐻 = (𝑠 × 𝑠)) | |
9 | 8 | adantl 481 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → dom 𝐻 = (𝑠 × 𝑠)) |
10 | 9 | dmeqd 5803 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = dom (𝑠 × 𝑠)) |
11 | dmxpid 5828 | . . . . . . . . . . . 12 ⊢ dom (𝑠 × 𝑠) = 𝑠 | |
12 | 10, 11 | eqtrdi 2795 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = 𝑠) |
13 | 7, 12 | eqtr2d 2779 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝑠 = 𝑆) |
14 | 13 | sqxpeqd 5612 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → (𝑠 × 𝑠) = (𝑆 × 𝑆)) |
15 | 14 | fneq2d 6511 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → (𝐻 Fn (𝑠 × 𝑠) ↔ 𝐻 Fn (𝑆 × 𝑆))) |
16 | 5, 15 | mpbid 231 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑆 × 𝑆)) |
17 | 16 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝐻 Fn (𝑠 × 𝑠) → 𝐻 Fn (𝑆 × 𝑆))) |
18 | 4, 17 | syl5 34 | . . . . 5 ⊢ (𝜑 → (𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥) → 𝐻 Fn (𝑆 × 𝑆))) |
19 | 18 | rexlimdvw 3218 | . . . 4 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥) → 𝐻 Fn (𝑆 × 𝑆))) |
20 | 19 | adantld 490 | . . 3 ⊢ (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥)) → 𝐻 Fn (𝑆 × 𝑆))) |
21 | 20 | exlimdv 1937 | . 2 ⊢ (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥)) → 𝐻 Fn (𝑆 × 𝑆))) |
22 | 3, 21 | mpd 15 | 1 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 𝒫 cpw 4530 class class class wbr 5070 × cxp 5578 dom cdm 5580 Fn wfn 6413 ‘cfv 6418 Xcixp 8643 ⊆cat cssc 17436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ixp 8644 df-ssc 17439 |
This theorem is referenced by: ssctr 17454 ssceq 17455 subcfn 17472 subsubc 17484 |
Copyright terms: Public domain | W3C validator |