MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscfn1 Structured version   Visualization version   GIF version

Theorem sscfn1 17878
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
sscfn1.1 (𝜑𝐻cat 𝐽)
sscfn1.2 (𝜑𝑆 = dom dom 𝐻)
Assertion
Ref Expression
sscfn1 (𝜑𝐻 Fn (𝑆 × 𝑆))

Proof of Theorem sscfn1
Dummy variables 𝑡 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sscfn1.1 . . 3 (𝜑𝐻cat 𝐽)
2 brssc 17875 . . 3 (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
31, 2sylib 218 . 2 (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
4 ixpfn 8961 . . . . . 6 (𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 Fn (𝑠 × 𝑠))
5 simpr 484 . . . . . . . 8 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑠 × 𝑠))
6 sscfn1.2 . . . . . . . . . . . 12 (𝜑𝑆 = dom dom 𝐻)
76adantr 480 . . . . . . . . . . 11 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝑆 = dom dom 𝐻)
8 fndm 6682 . . . . . . . . . . . . . 14 (𝐻 Fn (𝑠 × 𝑠) → dom 𝐻 = (𝑠 × 𝑠))
98adantl 481 . . . . . . . . . . . . 13 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom 𝐻 = (𝑠 × 𝑠))
109dmeqd 5930 . . . . . . . . . . . 12 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = dom (𝑠 × 𝑠))
11 dmxpid 5955 . . . . . . . . . . . 12 dom (𝑠 × 𝑠) = 𝑠
1210, 11eqtrdi 2796 . . . . . . . . . . 11 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = 𝑠)
137, 12eqtr2d 2781 . . . . . . . . . 10 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝑠 = 𝑆)
1413sqxpeqd 5732 . . . . . . . . 9 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → (𝑠 × 𝑠) = (𝑆 × 𝑆))
1514fneq2d 6673 . . . . . . . 8 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → (𝐻 Fn (𝑠 × 𝑠) ↔ 𝐻 Fn (𝑆 × 𝑆)))
165, 15mpbid 232 . . . . . . 7 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑆 × 𝑆))
1716ex 412 . . . . . 6 (𝜑 → (𝐻 Fn (𝑠 × 𝑠) → 𝐻 Fn (𝑆 × 𝑆)))
184, 17syl5 34 . . . . 5 (𝜑 → (𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 Fn (𝑆 × 𝑆)))
1918rexlimdvw 3166 . . . 4 (𝜑 → (∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 Fn (𝑆 × 𝑆)))
2019adantld 490 . . 3 (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → 𝐻 Fn (𝑆 × 𝑆)))
2120exlimdv 1932 . 2 (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → 𝐻 Fn (𝑆 × 𝑆)))
223, 21mpd 15 1 (𝜑𝐻 Fn (𝑆 × 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wrex 3076  𝒫 cpw 4622   class class class wbr 5166   × cxp 5698  dom cdm 5700   Fn wfn 6568  cfv 6573  Xcixp 8955  cat cssc 17868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ixp 8956  df-ssc 17871
This theorem is referenced by:  ssctr  17886  ssceq  17887  subcfn  17905  subsubc  17917
  Copyright terms: Public domain W3C validator