![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sscfn1 | Structured version Visualization version GIF version |
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
sscfn1.1 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
sscfn1.2 | ⊢ (𝜑 → 𝑆 = dom dom 𝐻) |
Ref | Expression |
---|---|
sscfn1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sscfn1.1 | . . 3 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
2 | brssc 16913 | . . 3 ⊢ (𝐻 ⊆cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥))) | |
3 | 1, 2 | sylib 219 | . 2 ⊢ (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥))) |
4 | ixpfn 8316 | . . . . . 6 ⊢ (𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥) → 𝐻 Fn (𝑠 × 𝑠)) | |
5 | simpr 485 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑠 × 𝑠)) | |
6 | sscfn1.2 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑆 = dom dom 𝐻) | |
7 | 6 | adantr 481 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝑆 = dom dom 𝐻) |
8 | fndm 6325 | . . . . . . . . . . . . . 14 ⊢ (𝐻 Fn (𝑠 × 𝑠) → dom 𝐻 = (𝑠 × 𝑠)) | |
9 | 8 | adantl 482 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → dom 𝐻 = (𝑠 × 𝑠)) |
10 | 9 | dmeqd 5660 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = dom (𝑠 × 𝑠)) |
11 | dmxpid 5682 | . . . . . . . . . . . 12 ⊢ dom (𝑠 × 𝑠) = 𝑠 | |
12 | 10, 11 | syl6eq 2847 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = 𝑠) |
13 | 7, 12 | eqtr2d 2832 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝑠 = 𝑆) |
14 | 13 | sqxpeqd 5475 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → (𝑠 × 𝑠) = (𝑆 × 𝑆)) |
15 | 14 | fneq2d 6317 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → (𝐻 Fn (𝑠 × 𝑠) ↔ 𝐻 Fn (𝑆 × 𝑆))) |
16 | 5, 15 | mpbid 233 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑆 × 𝑆)) |
17 | 16 | ex 413 | . . . . . 6 ⊢ (𝜑 → (𝐻 Fn (𝑠 × 𝑠) → 𝐻 Fn (𝑆 × 𝑆))) |
18 | 4, 17 | syl5 34 | . . . . 5 ⊢ (𝜑 → (𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥) → 𝐻 Fn (𝑆 × 𝑆))) |
19 | 18 | rexlimdvw 3253 | . . . 4 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥) → 𝐻 Fn (𝑆 × 𝑆))) |
20 | 19 | adantld 491 | . . 3 ⊢ (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥)) → 𝐻 Fn (𝑆 × 𝑆))) |
21 | 20 | exlimdv 1911 | . 2 ⊢ (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥)) → 𝐻 Fn (𝑆 × 𝑆))) |
22 | 3, 21 | mpd 15 | 1 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∃wex 1761 ∈ wcel 2081 ∃wrex 3106 𝒫 cpw 4453 class class class wbr 4962 × cxp 5441 dom cdm 5443 Fn wfn 6220 ‘cfv 6225 Xcixp 8310 ⊆cat cssc 16906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-ixp 8311 df-ssc 16909 |
This theorem is referenced by: ssctr 16924 ssceq 16925 subcfn 16940 subsubc 16952 |
Copyright terms: Public domain | W3C validator |