MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscfn1 Structured version   Visualization version   GIF version

Theorem sscfn1 17529
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
sscfn1.1 (𝜑𝐻cat 𝐽)
sscfn1.2 (𝜑𝑆 = dom dom 𝐻)
Assertion
Ref Expression
sscfn1 (𝜑𝐻 Fn (𝑆 × 𝑆))

Proof of Theorem sscfn1
Dummy variables 𝑡 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sscfn1.1 . . 3 (𝜑𝐻cat 𝐽)
2 brssc 17526 . . 3 (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
31, 2sylib 217 . 2 (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
4 ixpfn 8691 . . . . . 6 (𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 Fn (𝑠 × 𝑠))
5 simpr 485 . . . . . . . 8 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑠 × 𝑠))
6 sscfn1.2 . . . . . . . . . . . 12 (𝜑𝑆 = dom dom 𝐻)
76adantr 481 . . . . . . . . . . 11 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝑆 = dom dom 𝐻)
8 fndm 6536 . . . . . . . . . . . . . 14 (𝐻 Fn (𝑠 × 𝑠) → dom 𝐻 = (𝑠 × 𝑠))
98adantl 482 . . . . . . . . . . . . 13 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom 𝐻 = (𝑠 × 𝑠))
109dmeqd 5814 . . . . . . . . . . . 12 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = dom (𝑠 × 𝑠))
11 dmxpid 5839 . . . . . . . . . . . 12 dom (𝑠 × 𝑠) = 𝑠
1210, 11eqtrdi 2794 . . . . . . . . . . 11 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = 𝑠)
137, 12eqtr2d 2779 . . . . . . . . . 10 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝑠 = 𝑆)
1413sqxpeqd 5621 . . . . . . . . 9 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → (𝑠 × 𝑠) = (𝑆 × 𝑆))
1514fneq2d 6527 . . . . . . . 8 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → (𝐻 Fn (𝑠 × 𝑠) ↔ 𝐻 Fn (𝑆 × 𝑆)))
165, 15mpbid 231 . . . . . . 7 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑆 × 𝑆))
1716ex 413 . . . . . 6 (𝜑 → (𝐻 Fn (𝑠 × 𝑠) → 𝐻 Fn (𝑆 × 𝑆)))
184, 17syl5 34 . . . . 5 (𝜑 → (𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 Fn (𝑆 × 𝑆)))
1918rexlimdvw 3219 . . . 4 (𝜑 → (∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 Fn (𝑆 × 𝑆)))
2019adantld 491 . . 3 (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → 𝐻 Fn (𝑆 × 𝑆)))
2120exlimdv 1936 . 2 (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → 𝐻 Fn (𝑆 × 𝑆)))
223, 21mpd 15 1 (𝜑𝐻 Fn (𝑆 × 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wrex 3065  𝒫 cpw 4533   class class class wbr 5074   × cxp 5587  dom cdm 5589   Fn wfn 6428  cfv 6433  Xcixp 8685  cat cssc 17519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ixp 8686  df-ssc 17522
This theorem is referenced by:  ssctr  17537  ssceq  17538  subcfn  17556  subsubc  17568
  Copyright terms: Public domain W3C validator