MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscfn1 Structured version   Visualization version   GIF version

Theorem sscfn1 17724
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
sscfn1.1 (𝜑𝐻cat 𝐽)
sscfn1.2 (𝜑𝑆 = dom dom 𝐻)
Assertion
Ref Expression
sscfn1 (𝜑𝐻 Fn (𝑆 × 𝑆))

Proof of Theorem sscfn1
Dummy variables 𝑡 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sscfn1.1 . . 3 (𝜑𝐻cat 𝐽)
2 brssc 17721 . . 3 (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
31, 2sylib 218 . 2 (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
4 ixpfn 8827 . . . . . 6 (𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 Fn (𝑠 × 𝑠))
5 simpr 484 . . . . . . . 8 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑠 × 𝑠))
6 sscfn1.2 . . . . . . . . . . . 12 (𝜑𝑆 = dom dom 𝐻)
76adantr 480 . . . . . . . . . . 11 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝑆 = dom dom 𝐻)
8 fndm 6584 . . . . . . . . . . . . . 14 (𝐻 Fn (𝑠 × 𝑠) → dom 𝐻 = (𝑠 × 𝑠))
98adantl 481 . . . . . . . . . . . . 13 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom 𝐻 = (𝑠 × 𝑠))
109dmeqd 5844 . . . . . . . . . . . 12 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = dom (𝑠 × 𝑠))
11 dmxpid 5869 . . . . . . . . . . . 12 dom (𝑠 × 𝑠) = 𝑠
1210, 11eqtrdi 2782 . . . . . . . . . . 11 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = 𝑠)
137, 12eqtr2d 2767 . . . . . . . . . 10 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝑠 = 𝑆)
1413sqxpeqd 5646 . . . . . . . . 9 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → (𝑠 × 𝑠) = (𝑆 × 𝑆))
1514fneq2d 6575 . . . . . . . 8 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → (𝐻 Fn (𝑠 × 𝑠) ↔ 𝐻 Fn (𝑆 × 𝑆)))
165, 15mpbid 232 . . . . . . 7 ((𝜑𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑆 × 𝑆))
1716ex 412 . . . . . 6 (𝜑 → (𝐻 Fn (𝑠 × 𝑠) → 𝐻 Fn (𝑆 × 𝑆)))
184, 17syl5 34 . . . . 5 (𝜑 → (𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 Fn (𝑆 × 𝑆)))
1918rexlimdvw 3138 . . . 4 (𝜑 → (∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 Fn (𝑆 × 𝑆)))
2019adantld 490 . . 3 (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → 𝐻 Fn (𝑆 × 𝑆)))
2120exlimdv 1934 . 2 (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → 𝐻 Fn (𝑆 × 𝑆)))
223, 21mpd 15 1 (𝜑𝐻 Fn (𝑆 × 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  wrex 3056  𝒫 cpw 4547   class class class wbr 5089   × cxp 5612  dom cdm 5614   Fn wfn 6476  cfv 6481  Xcixp 8821  cat cssc 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ixp 8822  df-ssc 17717
This theorem is referenced by:  ssctr  17732  ssceq  17733  subcfn  17748  subsubc  17760  iinfssclem1  49094  iinfssc  49097
  Copyright terms: Public domain W3C validator