![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sscfn1 | Structured version Visualization version GIF version |
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
sscfn1.1 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
sscfn1.2 | ⊢ (𝜑 → 𝑆 = dom dom 𝐻) |
Ref | Expression |
---|---|
sscfn1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sscfn1.1 | . . 3 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
2 | brssc 17862 | . . 3 ⊢ (𝐻 ⊆cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥))) | |
3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥))) |
4 | ixpfn 8942 | . . . . . 6 ⊢ (𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥) → 𝐻 Fn (𝑠 × 𝑠)) | |
5 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑠 × 𝑠)) | |
6 | sscfn1.2 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑆 = dom dom 𝐻) | |
7 | 6 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝑆 = dom dom 𝐻) |
8 | fndm 6672 | . . . . . . . . . . . . . 14 ⊢ (𝐻 Fn (𝑠 × 𝑠) → dom 𝐻 = (𝑠 × 𝑠)) | |
9 | 8 | adantl 481 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → dom 𝐻 = (𝑠 × 𝑠)) |
10 | 9 | dmeqd 5919 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = dom (𝑠 × 𝑠)) |
11 | dmxpid 5944 | . . . . . . . . . . . 12 ⊢ dom (𝑠 × 𝑠) = 𝑠 | |
12 | 10, 11 | eqtrdi 2791 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = 𝑠) |
13 | 7, 12 | eqtr2d 2776 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝑠 = 𝑆) |
14 | 13 | sqxpeqd 5721 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → (𝑠 × 𝑠) = (𝑆 × 𝑆)) |
15 | 14 | fneq2d 6663 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → (𝐻 Fn (𝑠 × 𝑠) ↔ 𝐻 Fn (𝑆 × 𝑆))) |
16 | 5, 15 | mpbid 232 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑆 × 𝑆)) |
17 | 16 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝐻 Fn (𝑠 × 𝑠) → 𝐻 Fn (𝑆 × 𝑆))) |
18 | 4, 17 | syl5 34 | . . . . 5 ⊢ (𝜑 → (𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥) → 𝐻 Fn (𝑆 × 𝑆))) |
19 | 18 | rexlimdvw 3158 | . . . 4 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥) → 𝐻 Fn (𝑆 × 𝑆))) |
20 | 19 | adantld 490 | . . 3 ⊢ (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥)) → 𝐻 Fn (𝑆 × 𝑆))) |
21 | 20 | exlimdv 1931 | . 2 ⊢ (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥)) → 𝐻 Fn (𝑆 × 𝑆))) |
22 | 3, 21 | mpd 15 | 1 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ∃wrex 3068 𝒫 cpw 4605 class class class wbr 5148 × cxp 5687 dom cdm 5689 Fn wfn 6558 ‘cfv 6563 Xcixp 8936 ⊆cat cssc 17855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ixp 8937 df-ssc 17858 |
This theorem is referenced by: ssctr 17873 ssceq 17874 subcfn 17892 subsubc 17904 |
Copyright terms: Public domain | W3C validator |