Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sscfn1 | Structured version Visualization version GIF version |
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
sscfn1.1 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
sscfn1.2 | ⊢ (𝜑 → 𝑆 = dom dom 𝐻) |
Ref | Expression |
---|---|
sscfn1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sscfn1.1 | . . 3 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
2 | brssc 17144 | . . 3 ⊢ (𝐻 ⊆cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥))) | |
3 | 1, 2 | sylib 221 | . 2 ⊢ (𝜑 → ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥))) |
4 | ixpfn 8486 | . . . . . 6 ⊢ (𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥) → 𝐻 Fn (𝑠 × 𝑠)) | |
5 | simpr 489 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑠 × 𝑠)) | |
6 | sscfn1.2 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑆 = dom dom 𝐻) | |
7 | 6 | adantr 485 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝑆 = dom dom 𝐻) |
8 | fndm 6437 | . . . . . . . . . . . . . 14 ⊢ (𝐻 Fn (𝑠 × 𝑠) → dom 𝐻 = (𝑠 × 𝑠)) | |
9 | 8 | adantl 486 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → dom 𝐻 = (𝑠 × 𝑠)) |
10 | 9 | dmeqd 5746 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = dom (𝑠 × 𝑠)) |
11 | dmxpid 5772 | . . . . . . . . . . . 12 ⊢ dom (𝑠 × 𝑠) = 𝑠 | |
12 | 10, 11 | eqtrdi 2810 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → dom dom 𝐻 = 𝑠) |
13 | 7, 12 | eqtr2d 2795 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝑠 = 𝑆) |
14 | 13 | sqxpeqd 5557 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → (𝑠 × 𝑠) = (𝑆 × 𝑆)) |
15 | 14 | fneq2d 6429 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → (𝐻 Fn (𝑠 × 𝑠) ↔ 𝐻 Fn (𝑆 × 𝑆))) |
16 | 5, 15 | mpbid 235 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐻 Fn (𝑠 × 𝑠)) → 𝐻 Fn (𝑆 × 𝑆)) |
17 | 16 | ex 417 | . . . . . 6 ⊢ (𝜑 → (𝐻 Fn (𝑠 × 𝑠) → 𝐻 Fn (𝑆 × 𝑆))) |
18 | 4, 17 | syl5 34 | . . . . 5 ⊢ (𝜑 → (𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥) → 𝐻 Fn (𝑆 × 𝑆))) |
19 | 18 | rexlimdvw 3215 | . . . 4 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥) → 𝐻 Fn (𝑆 × 𝑆))) |
20 | 19 | adantld 495 | . . 3 ⊢ (𝜑 → ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥)) → 𝐻 Fn (𝑆 × 𝑆))) |
21 | 20 | exlimdv 1935 | . 2 ⊢ (𝜑 → (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥)) → 𝐻 Fn (𝑆 × 𝑆))) |
22 | 3, 21 | mpd 15 | 1 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∃wex 1782 ∈ wcel 2112 ∃wrex 3072 𝒫 cpw 4495 class class class wbr 5033 × cxp 5523 dom cdm 5525 Fn wfn 6331 ‘cfv 6336 Xcixp 8480 ⊆cat cssc 17137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ixp 8481 df-ssc 17140 |
This theorem is referenced by: ssctr 17155 ssceq 17156 subcfn 17171 subsubc 17183 |
Copyright terms: Public domain | W3C validator |