MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrngid Structured version   Visualization version   GIF version

Theorem subrngid 20458
Description: Every non-unital ring is a subring of itself. (Contributed by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
subrngss.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
subrngid (𝑅 ∈ Rng → 𝐵 ∈ (SubRng‘𝑅))

Proof of Theorem subrngid
StepHypRef Expression
1 id 22 . 2 (𝑅 ∈ Rng → 𝑅 ∈ Rng)
2 subrngss.1 . . . 4 𝐵 = (Base‘𝑅)
32ressid 17214 . . 3 (𝑅 ∈ Rng → (𝑅s 𝐵) = 𝑅)
43, 1eqeltrd 2828 . 2 (𝑅 ∈ Rng → (𝑅s 𝐵) ∈ Rng)
5 ssidd 3970 . 2 (𝑅 ∈ Rng → 𝐵𝐵)
62issubrng 20456 . 2 (𝐵 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐵) ∈ Rng ∧ 𝐵𝐵))
71, 4, 5, 6syl3anbrc 1344 1 (𝑅 ∈ Rng → 𝐵 ∈ (SubRng‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  Rngcrng 20061  SubRngcsubrng 20454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-ress 17201  df-subrng 20455
This theorem is referenced by:  subrngmre  20471
  Copyright terms: Public domain W3C validator