![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrngid | Structured version Visualization version GIF version |
Description: Every non-unital ring is a subring of itself. (Contributed by AV, 14-Feb-2025.) |
Ref | Expression |
---|---|
subrngss.1 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
subrngid | ⊢ (𝑅 ∈ Rng → 𝐵 ∈ (SubRng‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Rng) | |
2 | subrngss.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 2 | ressid 17228 | . . 3 ⊢ (𝑅 ∈ Rng → (𝑅 ↾s 𝐵) = 𝑅) |
4 | 3, 1 | eqeltrd 2825 | . 2 ⊢ (𝑅 ∈ Rng → (𝑅 ↾s 𝐵) ∈ Rng) |
5 | ssidd 4000 | . 2 ⊢ (𝑅 ∈ Rng → 𝐵 ⊆ 𝐵) | |
6 | 2 | issubrng 20496 | . 2 ⊢ (𝐵 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐵) ∈ Rng ∧ 𝐵 ⊆ 𝐵)) |
7 | 1, 4, 5, 6 | syl3anbrc 1340 | 1 ⊢ (𝑅 ∈ Rng → 𝐵 ∈ (SubRng‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 ↾s cress 17212 Rngcrng 20104 SubRngcsubrng 20494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-ress 17213 df-subrng 20495 |
This theorem is referenced by: subrngmre 20511 |
Copyright terms: Public domain | W3C validator |