MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrngid Structured version   Visualization version   GIF version

Theorem subrngid 20566
Description: Every non-unital ring is a subring of itself. (Contributed by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
subrngss.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
subrngid (𝑅 ∈ Rng → 𝐵 ∈ (SubRng‘𝑅))

Proof of Theorem subrngid
StepHypRef Expression
1 id 22 . 2 (𝑅 ∈ Rng → 𝑅 ∈ Rng)
2 subrngss.1 . . . 4 𝐵 = (Base‘𝑅)
32ressid 17290 . . 3 (𝑅 ∈ Rng → (𝑅s 𝐵) = 𝑅)
43, 1eqeltrd 2839 . 2 (𝑅 ∈ Rng → (𝑅s 𝐵) ∈ Rng)
5 ssidd 4019 . 2 (𝑅 ∈ Rng → 𝐵𝐵)
62issubrng 20564 . 2 (𝐵 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐵) ∈ Rng ∧ 𝐵𝐵))
71, 4, 5, 6syl3anbrc 1342 1 (𝑅 ∈ Rng → 𝐵 ∈ (SubRng‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963  cfv 6563  (class class class)co 7431  Basecbs 17245  s cress 17274  Rngcrng 20170  SubRngcsubrng 20562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-ress 17275  df-subrng 20563
This theorem is referenced by:  subrngmre  20579
  Copyright terms: Public domain W3C validator