MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrngid Structured version   Visualization version   GIF version

Theorem subrngid 20465
Description: Every non-unital ring is a subring of itself. (Contributed by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
subrngss.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
subrngid (𝑅 ∈ Rng → 𝐵 ∈ (SubRng‘𝑅))

Proof of Theorem subrngid
StepHypRef Expression
1 id 22 . 2 (𝑅 ∈ Rng → 𝑅 ∈ Rng)
2 subrngss.1 . . . 4 𝐵 = (Base‘𝑅)
32ressid 17221 . . 3 (𝑅 ∈ Rng → (𝑅s 𝐵) = 𝑅)
43, 1eqeltrd 2829 . 2 (𝑅 ∈ Rng → (𝑅s 𝐵) ∈ Rng)
5 ssidd 3973 . 2 (𝑅 ∈ Rng → 𝐵𝐵)
62issubrng 20463 . 2 (𝐵 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐵) ∈ Rng ∧ 𝐵𝐵))
71, 4, 5, 6syl3anbrc 1344 1 (𝑅 ∈ Rng → 𝐵 ∈ (SubRng‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  Rngcrng 20068  SubRngcsubrng 20461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-ress 17208  df-subrng 20462
This theorem is referenced by:  subrngmre  20478
  Copyright terms: Public domain W3C validator