MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrngid Structured version   Visualization version   GIF version

Theorem subrngid 20452
Description: Every non-unital ring is a subring of itself. (Contributed by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
subrngss.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
subrngid (𝑅 ∈ Rng → 𝐵 ∈ (SubRng‘𝑅))

Proof of Theorem subrngid
StepHypRef Expression
1 id 22 . 2 (𝑅 ∈ Rng → 𝑅 ∈ Rng)
2 subrngss.1 . . . 4 𝐵 = (Base‘𝑅)
32ressid 17173 . . 3 (𝑅 ∈ Rng → (𝑅s 𝐵) = 𝑅)
43, 1eqeltrd 2828 . 2 (𝑅 ∈ Rng → (𝑅s 𝐵) ∈ Rng)
5 ssidd 3961 . 2 (𝑅 ∈ Rng → 𝐵𝐵)
62issubrng 20450 . 2 (𝐵 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐵) ∈ Rng ∧ 𝐵𝐵))
71, 4, 5, 6syl3anbrc 1344 1 (𝑅 ∈ Rng → 𝐵 ∈ (SubRng‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3905  cfv 6486  (class class class)co 7353  Basecbs 17138  s cress 17159  Rngcrng 20055  SubRngcsubrng 20448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-ress 17160  df-subrng 20449
This theorem is referenced by:  subrngmre  20465
  Copyright terms: Public domain W3C validator