![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressid | Structured version Visualization version GIF version |
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
ressid.1 | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressid | ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4031 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
2 | ressid.1 | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 2 | fvexi 6934 | . 2 ⊢ 𝐵 ∈ V |
4 | eqid 2740 | . . 3 ⊢ (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵) | |
5 | 4, 2 | ressid2 17291 | . 2 ⊢ ((𝐵 ⊆ 𝐵 ∧ 𝑊 ∈ 𝑋 ∧ 𝐵 ∈ V) → (𝑊 ↾s 𝐵) = 𝑊) |
6 | 1, 3, 5 | mp3an13 1452 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-ress 17288 |
This theorem is referenced by: ressval3d 17305 ressval3dOLD 17306 submgmid 18744 submid 18845 subgid 19168 gaid2 19343 subrngid 20575 subrgid 20601 sdrgid 20815 rlmval2 21222 rlmsca 21228 rlmsca2 21229 pjff 21755 dsmmfi 21781 frlmip 21821 evlrhm 22143 evlsscasrng 22144 evlsvarsrng 22146 evl1sca 22359 evl1var 22361 evls1scasrng 22364 evls1varsrng 22365 pf1ind 22380 evl1gsumadd 22383 evl1varpw 22386 ressply1evl 22395 cnstrcvs 25193 cncvs 25197 rlmbn 25414 ishl2 25423 rrxprds 25442 dchrptlem2 27327 evl1fpws 33555 resssra 33602 rgmoddimOLD 33623 qusdimsum 33641 fldextid 33672 riccrng1 42476 ricdrng1 42483 evlsevl 42526 evlvvval 42528 evlvvvallem 42529 mhphf4 42555 lnmfg 43039 lmhmfgsplit 43043 pwslnmlem2 43050 simpcntrab 46791 |
Copyright terms: Public domain | W3C validator |