MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressid Structured version   Visualization version   GIF version

Theorem ressid 17265
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypothesis
Ref Expression
ressid.1 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressid (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)

Proof of Theorem ressid
StepHypRef Expression
1 ssid 3981 . 2 𝐵𝐵
2 ressid.1 . . 3 𝐵 = (Base‘𝑊)
32fvexi 6890 . 2 𝐵 ∈ V
4 eqid 2735 . . 3 (𝑊s 𝐵) = (𝑊s 𝐵)
54, 2ressid2 17255 . 2 ((𝐵𝐵𝑊𝑋𝐵 ∈ V) → (𝑊s 𝐵) = 𝑊)
61, 3, 5mp3an13 1454 1 (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926  cfv 6531  (class class class)co 7405  Basecbs 17228  s cress 17251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-ress 17252
This theorem is referenced by:  ressval3d  17267  submgmid  18684  submid  18788  subgid  19111  gaid2  19286  subrngid  20509  subrgid  20533  sdrgid  20752  rlmval2  21150  rlmsca  21156  rlmsca2  21157  pjff  21672  dsmmfi  21698  frlmip  21738  evlrhm  22054  evlsscasrng  22055  evlsvarsrng  22057  evl1sca  22272  evl1var  22274  evls1scasrng  22277  evls1varsrng  22278  pf1ind  22293  evl1gsumadd  22296  evl1varpw  22299  ressply1evl  22308  cnstrcvs  25092  cncvs  25096  rlmbn  25313  ishl2  25322  rrxprds  25341  dchrptlem2  27228  evl1fpws  33577  resssra  33627  rgmoddimOLD  33650  qusdimsum  33668  fldextid  33701  riccrng1  42544  ricdrng1  42551  evlsevl  42594  evlvvval  42596  evlvvvallem  42597  mhphf4  42623  lnmfg  43106  lmhmfgsplit  43110  pwslnmlem2  43117  simpcntrab  46899
  Copyright terms: Public domain W3C validator