| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressid | Structured version Visualization version GIF version | ||
| Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressid.1 | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| ressid | ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3966 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
| 2 | ressid.1 | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 2 | fvexi 6854 | . 2 ⊢ 𝐵 ∈ V |
| 4 | eqid 2729 | . . 3 ⊢ (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵) | |
| 5 | 4, 2 | ressid2 17180 | . 2 ⊢ ((𝐵 ⊆ 𝐵 ∧ 𝑊 ∈ 𝑋 ∧ 𝐵 ∈ V) → (𝑊 ↾s 𝐵) = 𝑊) |
| 6 | 1, 3, 5 | mp3an13 1454 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-ress 17177 |
| This theorem is referenced by: ressval3d 17192 submgmid 18615 submid 18719 subgid 19042 gaid2 19217 subrngid 20469 subrgid 20493 sdrgid 20712 rlmval2 21131 rlmsca 21137 rlmsca2 21138 pjff 21654 dsmmfi 21680 frlmip 21720 evlrhm 22036 evlsscasrng 22037 evlsvarsrng 22039 evl1sca 22254 evl1var 22256 evls1scasrng 22259 evls1varsrng 22260 pf1ind 22275 evl1gsumadd 22278 evl1varpw 22281 ressply1evl 22290 cnstrcvs 25074 cncvs 25078 rlmbn 25294 ishl2 25303 rrxprds 25322 dchrptlem2 27209 evl1fpws 33526 resssra 33576 rgmoddimOLD 33599 qusdimsum 33617 fldextid 33648 riccrng1 42502 ricdrng1 42509 evlsevl 42552 evlvvval 42554 evlvvvallem 42555 mhphf4 42581 lnmfg 43064 lmhmfgsplit 43068 pwslnmlem2 43075 simpcntrab 46861 |
| Copyright terms: Public domain | W3C validator |