Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressid | Structured version Visualization version GIF version |
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
ressid.1 | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressid | ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3945 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
2 | ressid.1 | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 2 | fvexi 6806 | . 2 ⊢ 𝐵 ∈ V |
4 | eqid 2733 | . . 3 ⊢ (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵) | |
5 | 4, 2 | ressid2 16973 | . 2 ⊢ ((𝐵 ⊆ 𝐵 ∧ 𝑊 ∈ 𝑋 ∧ 𝐵 ∈ V) → (𝑊 ↾s 𝐵) = 𝑊) |
6 | 1, 3, 5 | mp3an13 1450 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 Vcvv 3434 ⊆ wss 3889 ‘cfv 6447 (class class class)co 7295 Basecbs 16940 ↾s cress 16969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-sbc 3719 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-iota 6399 df-fun 6449 df-fv 6455 df-ov 7298 df-oprab 7299 df-mpo 7300 df-ress 16970 |
This theorem is referenced by: ressval3d 16984 ressval3dOLD 16985 submid 18477 subgid 18785 gaid2 18937 subrgid 20054 sdrgid 20092 rlmval2 20492 rlmsca 20498 rlmsca2 20499 pjff 20947 dsmmfi 20973 frlmip 21013 evlrhm 21334 evlsscasrng 21335 evlsvarsrng 21337 evl1sca 21528 evl1var 21530 evls1scasrng 21533 evls1varsrng 21534 pf1ind 21549 evl1gsumadd 21552 evl1varpw 21555 cnstrcvs 24332 cncvs 24336 rlmbn 24553 ishl2 24562 rrxprds 24581 dchrptlem2 26441 rgmoddim 31721 qusdimsum 31737 fldextid 31762 mhphf4 40311 lnmfg 40931 lmhmfgsplit 40935 pwslnmlem2 40942 simpcntrab 44426 submgmid 45387 |
Copyright terms: Public domain | W3C validator |