MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressid Structured version   Visualization version   GIF version

Theorem ressid 17214
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypothesis
Ref Expression
ressid.1 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressid (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)

Proof of Theorem ressid
StepHypRef Expression
1 ssid 3969 . 2 𝐵𝐵
2 ressid.1 . . 3 𝐵 = (Base‘𝑊)
32fvexi 6872 . 2 𝐵 ∈ V
4 eqid 2729 . . 3 (𝑊s 𝐵) = (𝑊s 𝐵)
54, 2ressid2 17204 . 2 ((𝐵𝐵𝑊𝑋𝐵 ∈ V) → (𝑊s 𝐵) = 𝑊)
61, 3, 5mp3an13 1454 1 (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-ress 17201
This theorem is referenced by:  ressval3d  17216  submgmid  18633  submid  18737  subgid  19060  gaid2  19235  subrngid  20458  subrgid  20482  sdrgid  20701  rlmval2  21099  rlmsca  21105  rlmsca2  21106  pjff  21621  dsmmfi  21647  frlmip  21687  evlrhm  22003  evlsscasrng  22004  evlsvarsrng  22006  evl1sca  22221  evl1var  22223  evls1scasrng  22226  evls1varsrng  22227  pf1ind  22242  evl1gsumadd  22245  evl1varpw  22248  ressply1evl  22257  cnstrcvs  25041  cncvs  25045  rlmbn  25261  ishl2  25270  rrxprds  25289  dchrptlem2  27176  evl1fpws  33533  resssra  33583  rgmoddimOLD  33606  qusdimsum  33624  fldextid  33655  riccrng1  42509  ricdrng1  42516  evlsevl  42559  evlvvval  42561  evlvvvallem  42562  mhphf4  42588  lnmfg  43071  lmhmfgsplit  43075  pwslnmlem2  43082  simpcntrab  46868
  Copyright terms: Public domain W3C validator