| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressid | Structured version Visualization version GIF version | ||
| Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressid.1 | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| ressid | ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3981 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
| 2 | ressid.1 | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 2 | fvexi 6890 | . 2 ⊢ 𝐵 ∈ V |
| 4 | eqid 2735 | . . 3 ⊢ (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵) | |
| 5 | 4, 2 | ressid2 17255 | . 2 ⊢ ((𝐵 ⊆ 𝐵 ∧ 𝑊 ∈ 𝑋 ∧ 𝐵 ∈ V) → (𝑊 ↾s 𝐵) = 𝑊) |
| 6 | 1, 3, 5 | mp3an13 1454 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 ↾s cress 17251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-ress 17252 |
| This theorem is referenced by: ressval3d 17267 submgmid 18684 submid 18788 subgid 19111 gaid2 19286 subrngid 20509 subrgid 20533 sdrgid 20752 rlmval2 21150 rlmsca 21156 rlmsca2 21157 pjff 21672 dsmmfi 21698 frlmip 21738 evlrhm 22054 evlsscasrng 22055 evlsvarsrng 22057 evl1sca 22272 evl1var 22274 evls1scasrng 22277 evls1varsrng 22278 pf1ind 22293 evl1gsumadd 22296 evl1varpw 22299 ressply1evl 22308 cnstrcvs 25092 cncvs 25096 rlmbn 25313 ishl2 25322 rrxprds 25341 dchrptlem2 27228 evl1fpws 33577 resssra 33627 rgmoddimOLD 33650 qusdimsum 33668 fldextid 33701 riccrng1 42544 ricdrng1 42551 evlsevl 42594 evlvvval 42596 evlvvvallem 42597 mhphf4 42623 lnmfg 43106 lmhmfgsplit 43110 pwslnmlem2 43117 simpcntrab 46899 |
| Copyright terms: Public domain | W3C validator |