Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressid | Structured version Visualization version GIF version |
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
ressid.1 | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressid | ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3923 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
2 | ressid.1 | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 2 | fvexi 6731 | . 2 ⊢ 𝐵 ∈ V |
4 | eqid 2737 | . . 3 ⊢ (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵) | |
5 | 4, 2 | ressid2 16788 | . 2 ⊢ ((𝐵 ⊆ 𝐵 ∧ 𝑊 ∈ 𝑋 ∧ 𝐵 ∈ V) → (𝑊 ↾s 𝐵) = 𝑊) |
6 | 1, 3, 5 | mp3an13 1454 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ⊆ wss 3866 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 ↾s cress 16784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-ress 16785 |
This theorem is referenced by: ressval3d 16798 submid 18237 subgid 18545 gaid2 18697 subrgid 19802 sdrgid 19840 rlmval2 20231 rlmsca 20237 rlmsca2 20238 pjff 20674 dsmmfi 20700 frlmip 20740 evlrhm 21056 evlsscasrng 21057 evlsvarsrng 21059 evl1sca 21250 evl1var 21252 evls1scasrng 21255 evls1varsrng 21256 pf1ind 21271 evl1gsumadd 21274 evl1varpw 21277 cnstrcvs 24038 cncvs 24042 rlmbn 24258 ishl2 24267 rrxprds 24286 dchrptlem2 26146 rgmoddim 31407 qusdimsum 31423 fldextid 31448 lnmfg 40610 lmhmfgsplit 40614 pwslnmlem2 40621 simpcntrab 44058 submgmid 45020 |
Copyright terms: Public domain | W3C validator |