MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressid Structured version   Visualization version   GIF version

Theorem ressid 17190
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypothesis
Ref Expression
ressid.1 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressid (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)

Proof of Theorem ressid
StepHypRef Expression
1 ssid 3966 . 2 𝐵𝐵
2 ressid.1 . . 3 𝐵 = (Base‘𝑊)
32fvexi 6854 . 2 𝐵 ∈ V
4 eqid 2729 . . 3 (𝑊s 𝐵) = (𝑊s 𝐵)
54, 2ressid2 17180 . 2 ((𝐵𝐵𝑊𝑋𝐵 ∈ V) → (𝑊s 𝐵) = 𝑊)
61, 3, 5mp3an13 1454 1 (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-ress 17177
This theorem is referenced by:  ressval3d  17192  submgmid  18615  submid  18719  subgid  19042  gaid2  19217  subrngid  20469  subrgid  20493  sdrgid  20712  rlmval2  21131  rlmsca  21137  rlmsca2  21138  pjff  21654  dsmmfi  21680  frlmip  21720  evlrhm  22036  evlsscasrng  22037  evlsvarsrng  22039  evl1sca  22254  evl1var  22256  evls1scasrng  22259  evls1varsrng  22260  pf1ind  22275  evl1gsumadd  22278  evl1varpw  22281  ressply1evl  22290  cnstrcvs  25074  cncvs  25078  rlmbn  25294  ishl2  25303  rrxprds  25322  dchrptlem2  27209  evl1fpws  33526  resssra  33576  rgmoddimOLD  33599  qusdimsum  33617  fldextid  33648  riccrng1  42502  ricdrng1  42509  evlsevl  42552  evlvvval  42554  evlvvvallem  42555  mhphf4  42581  lnmfg  43064  lmhmfgsplit  43068  pwslnmlem2  43075  simpcntrab  46861
  Copyright terms: Public domain W3C validator