MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressid Structured version   Visualization version   GIF version

Theorem ressid 17155
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypothesis
Ref Expression
ressid.1 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressid (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)

Proof of Theorem ressid
StepHypRef Expression
1 ssid 3952 . 2 𝐵𝐵
2 ressid.1 . . 3 𝐵 = (Base‘𝑊)
32fvexi 6836 . 2 𝐵 ∈ V
4 eqid 2731 . . 3 (𝑊s 𝐵) = (𝑊s 𝐵)
54, 2ressid2 17145 . 2 ((𝐵𝐵𝑊𝑋𝐵 ∈ V) → (𝑊s 𝐵) = 𝑊)
61, 3, 5mp3an13 1454 1 (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-ress 17142
This theorem is referenced by:  ressval3d  17157  submgmid  18614  submid  18718  subgid  19041  gaid2  19215  subrngid  20464  subrgid  20488  sdrgid  20707  rlmval2  21126  rlmsca  21132  rlmsca2  21133  pjff  21649  dsmmfi  21675  frlmip  21715  evlrhm  22031  evlsscasrng  22032  evlsvarsrng  22034  evl1sca  22249  evl1var  22251  evls1scasrng  22254  evls1varsrng  22255  pf1ind  22270  evl1gsumadd  22273  evl1varpw  22276  ressply1evl  22285  cnstrcvs  25068  cncvs  25072  rlmbn  25288  ishl2  25297  rrxprds  25316  dchrptlem2  27203  evl1fpws  33527  resssra  33599  rgmoddimOLD  33623  qusdimsum  33641  fldextid  33672  riccrng1  42624  ricdrng1  42631  evlsevl  42674  evlvvval  42676  evlvvvallem  42677  mhphf4  42703  lnmfg  43185  lmhmfgsplit  43189  pwslnmlem2  43196  simpcntrab  46978
  Copyright terms: Public domain W3C validator