MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressid Structured version   Visualization version   GIF version

Theorem ressid 17221
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypothesis
Ref Expression
ressid.1 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressid (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)

Proof of Theorem ressid
StepHypRef Expression
1 ssid 3972 . 2 𝐵𝐵
2 ressid.1 . . 3 𝐵 = (Base‘𝑊)
32fvexi 6875 . 2 𝐵 ∈ V
4 eqid 2730 . . 3 (𝑊s 𝐵) = (𝑊s 𝐵)
54, 2ressid2 17211 . 2 ((𝐵𝐵𝑊𝑋𝐵 ∈ V) → (𝑊s 𝐵) = 𝑊)
61, 3, 5mp3an13 1454 1 (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-ress 17208
This theorem is referenced by:  ressval3d  17223  submgmid  18640  submid  18744  subgid  19067  gaid2  19242  subrngid  20465  subrgid  20489  sdrgid  20708  rlmval2  21106  rlmsca  21112  rlmsca2  21113  pjff  21628  dsmmfi  21654  frlmip  21694  evlrhm  22010  evlsscasrng  22011  evlsvarsrng  22013  evl1sca  22228  evl1var  22230  evls1scasrng  22233  evls1varsrng  22234  pf1ind  22249  evl1gsumadd  22252  evl1varpw  22255  ressply1evl  22264  cnstrcvs  25048  cncvs  25052  rlmbn  25268  ishl2  25277  rrxprds  25296  dchrptlem2  27183  evl1fpws  33540  resssra  33590  rgmoddimOLD  33613  qusdimsum  33631  fldextid  33662  riccrng1  42516  ricdrng1  42523  evlsevl  42566  evlvvval  42568  evlvvvallem  42569  mhphf4  42595  lnmfg  43078  lmhmfgsplit  43082  pwslnmlem2  43089  simpcntrab  46875
  Copyright terms: Public domain W3C validator