| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressid | Structured version Visualization version GIF version | ||
| Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressid.1 | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| ressid | ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3972 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
| 2 | ressid.1 | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 2 | fvexi 6875 | . 2 ⊢ 𝐵 ∈ V |
| 4 | eqid 2730 | . . 3 ⊢ (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵) | |
| 5 | 4, 2 | ressid2 17211 | . 2 ⊢ ((𝐵 ⊆ 𝐵 ∧ 𝑊 ∈ 𝑋 ∧ 𝐵 ∈ V) → (𝑊 ↾s 𝐵) = 𝑊) |
| 6 | 1, 3, 5 | mp3an13 1454 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-ress 17208 |
| This theorem is referenced by: ressval3d 17223 submgmid 18640 submid 18744 subgid 19067 gaid2 19242 subrngid 20465 subrgid 20489 sdrgid 20708 rlmval2 21106 rlmsca 21112 rlmsca2 21113 pjff 21628 dsmmfi 21654 frlmip 21694 evlrhm 22010 evlsscasrng 22011 evlsvarsrng 22013 evl1sca 22228 evl1var 22230 evls1scasrng 22233 evls1varsrng 22234 pf1ind 22249 evl1gsumadd 22252 evl1varpw 22255 ressply1evl 22264 cnstrcvs 25048 cncvs 25052 rlmbn 25268 ishl2 25277 rrxprds 25296 dchrptlem2 27183 evl1fpws 33540 resssra 33590 rgmoddimOLD 33613 qusdimsum 33631 fldextid 33662 riccrng1 42516 ricdrng1 42523 evlsevl 42566 evlvvval 42568 evlvvvallem 42569 mhphf4 42595 lnmfg 43078 lmhmfgsplit 43082 pwslnmlem2 43089 simpcntrab 46875 |
| Copyright terms: Public domain | W3C validator |