MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressid Structured version   Visualization version   GIF version

Theorem ressid 17185
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypothesis
Ref Expression
ressid.1 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressid (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)

Proof of Theorem ressid
StepHypRef Expression
1 ssid 4003 . 2 𝐵𝐵
2 ressid.1 . . 3 𝐵 = (Base‘𝑊)
32fvexi 6902 . 2 𝐵 ∈ V
4 eqid 2732 . . 3 (𝑊s 𝐵) = (𝑊s 𝐵)
54, 2ressid2 17173 . 2 ((𝐵𝐵𝑊𝑋𝐵 ∈ V) → (𝑊s 𝐵) = 𝑊)
61, 3, 5mp3an13 1452 1 (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  wss 3947  cfv 6540  (class class class)co 7405  Basecbs 17140  s cress 17169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-ress 17170
This theorem is referenced by:  ressval3d  17187  ressval3dOLD  17188  submid  18687  subgid  19002  gaid2  19161  subrgid  20357  sdrgid  20400  rlmval2  20808  rlmsca  20814  rlmsca2  20815  pjff  21258  dsmmfi  21284  frlmip  21324  evlrhm  21650  evlsscasrng  21651  evlsvarsrng  21653  evl1sca  21844  evl1var  21846  evls1scasrng  21849  evls1varsrng  21850  pf1ind  21865  evl1gsumadd  21868  evl1varpw  21871  cnstrcvs  24648  cncvs  24652  rlmbn  24869  ishl2  24878  rrxprds  24897  dchrptlem2  26757  ressply1evl  32635  rgmoddimOLD  32683  qusdimsum  32701  fldextid  32726  riccrng1  41093  ricdrng1  41099  evlsevl  41140  evlvvval  41142  evlvvvallem  41143  mhphf4  41169  lnmfg  41809  lmhmfgsplit  41813  pwslnmlem2  41820  simpcntrab  45572  submgmid  46549  subrngid  46712
  Copyright terms: Public domain W3C validator