MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressid Structured version   Visualization version   GIF version

Theorem ressid 17190
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypothesis
Ref Expression
ressid.1 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressid (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)

Proof of Theorem ressid
StepHypRef Expression
1 ssid 3966 . 2 𝐵𝐵
2 ressid.1 . . 3 𝐵 = (Base‘𝑊)
32fvexi 6854 . 2 𝐵 ∈ V
4 eqid 2729 . . 3 (𝑊s 𝐵) = (𝑊s 𝐵)
54, 2ressid2 17180 . 2 ((𝐵𝐵𝑊𝑋𝐵 ∈ V) → (𝑊s 𝐵) = 𝑊)
61, 3, 5mp3an13 1454 1 (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-ress 17177
This theorem is referenced by:  ressval3d  17192  submgmid  18609  submid  18713  subgid  19036  gaid2  19211  subrngid  20434  subrgid  20458  sdrgid  20677  rlmval2  21075  rlmsca  21081  rlmsca2  21082  pjff  21597  dsmmfi  21623  frlmip  21663  evlrhm  21979  evlsscasrng  21980  evlsvarsrng  21982  evl1sca  22197  evl1var  22199  evls1scasrng  22202  evls1varsrng  22203  pf1ind  22218  evl1gsumadd  22221  evl1varpw  22224  ressply1evl  22233  cnstrcvs  25017  cncvs  25021  rlmbn  25237  ishl2  25246  rrxprds  25265  dchrptlem2  27152  evl1fpws  33506  resssra  33556  rgmoddimOLD  33579  qusdimsum  33597  fldextid  33628  riccrng1  42482  ricdrng1  42489  evlsevl  42532  evlvvval  42534  evlvvvallem  42535  mhphf4  42561  lnmfg  43044  lmhmfgsplit  43048  pwslnmlem2  43055  simpcntrab  46841
  Copyright terms: Public domain W3C validator