MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressid Structured version   Visualization version   GIF version

Theorem ressid 16880
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypothesis
Ref Expression
ressid.1 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressid (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)

Proof of Theorem ressid
StepHypRef Expression
1 ssid 3939 . 2 𝐵𝐵
2 ressid.1 . . 3 𝐵 = (Base‘𝑊)
32fvexi 6770 . 2 𝐵 ∈ V
4 eqid 2738 . . 3 (𝑊s 𝐵) = (𝑊s 𝐵)
54, 2ressid2 16871 . 2 ((𝐵𝐵𝑊𝑋𝐵 ∈ V) → (𝑊s 𝐵) = 𝑊)
61, 3, 5mp3an13 1450 1 (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-ress 16868
This theorem is referenced by:  ressval3d  16882  ressval3dOLD  16883  submid  18364  subgid  18672  gaid2  18824  subrgid  19941  sdrgid  19979  rlmval2  20377  rlmsca  20383  rlmsca2  20384  pjff  20829  dsmmfi  20855  frlmip  20895  evlrhm  21216  evlsscasrng  21217  evlsvarsrng  21219  evl1sca  21410  evl1var  21412  evls1scasrng  21415  evls1varsrng  21416  pf1ind  21431  evl1gsumadd  21434  evl1varpw  21437  cnstrcvs  24210  cncvs  24214  rlmbn  24430  ishl2  24439  rrxprds  24458  dchrptlem2  26318  rgmoddim  31595  qusdimsum  31611  fldextid  31636  lnmfg  40823  lmhmfgsplit  40827  pwslnmlem2  40834  simpcntrab  44273  submgmid  45235
  Copyright terms: Public domain W3C validator