MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressid Structured version   Visualization version   GIF version

Theorem ressid 17303
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypothesis
Ref Expression
ressid.1 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressid (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)

Proof of Theorem ressid
StepHypRef Expression
1 ssid 4031 . 2 𝐵𝐵
2 ressid.1 . . 3 𝐵 = (Base‘𝑊)
32fvexi 6934 . 2 𝐵 ∈ V
4 eqid 2740 . . 3 (𝑊s 𝐵) = (𝑊s 𝐵)
54, 2ressid2 17291 . 2 ((𝐵𝐵𝑊𝑋𝐵 ∈ V) → (𝑊s 𝐵) = 𝑊)
61, 3, 5mp3an13 1452 1 (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-ress 17288
This theorem is referenced by:  ressval3d  17305  ressval3dOLD  17306  submgmid  18744  submid  18845  subgid  19168  gaid2  19343  subrngid  20575  subrgid  20601  sdrgid  20815  rlmval2  21222  rlmsca  21228  rlmsca2  21229  pjff  21755  dsmmfi  21781  frlmip  21821  evlrhm  22143  evlsscasrng  22144  evlsvarsrng  22146  evl1sca  22359  evl1var  22361  evls1scasrng  22364  evls1varsrng  22365  pf1ind  22380  evl1gsumadd  22383  evl1varpw  22386  ressply1evl  22395  cnstrcvs  25193  cncvs  25197  rlmbn  25414  ishl2  25423  rrxprds  25442  dchrptlem2  27327  evl1fpws  33555  resssra  33602  rgmoddimOLD  33623  qusdimsum  33641  fldextid  33672  riccrng1  42476  ricdrng1  42483  evlsevl  42526  evlvvval  42528  evlvvvallem  42529  mhphf4  42555  lnmfg  43039  lmhmfgsplit  43043  pwslnmlem2  43050  simpcntrab  46791
  Copyright terms: Public domain W3C validator