| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressid | Structured version Visualization version GIF version | ||
| Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressid.1 | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| ressid | ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3958 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
| 2 | ressid.1 | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 2 | fvexi 6836 | . 2 ⊢ 𝐵 ∈ V |
| 4 | eqid 2729 | . . 3 ⊢ (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵) | |
| 5 | 4, 2 | ressid2 17145 | . 2 ⊢ ((𝐵 ⊆ 𝐵 ∧ 𝑊 ∈ 𝑋 ∧ 𝐵 ∈ V) → (𝑊 ↾s 𝐵) = 𝑊) |
| 6 | 1, 3, 5 | mp3an13 1454 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-ress 17142 |
| This theorem is referenced by: ressval3d 17157 submgmid 18580 submid 18684 subgid 19007 gaid2 19182 subrngid 20434 subrgid 20458 sdrgid 20677 rlmval2 21096 rlmsca 21102 rlmsca2 21103 pjff 21619 dsmmfi 21645 frlmip 21685 evlrhm 22001 evlsscasrng 22002 evlsvarsrng 22004 evl1sca 22219 evl1var 22221 evls1scasrng 22224 evls1varsrng 22225 pf1ind 22240 evl1gsumadd 22243 evl1varpw 22246 ressply1evl 22255 cnstrcvs 25039 cncvs 25043 rlmbn 25259 ishl2 25268 rrxprds 25287 dchrptlem2 27174 evl1fpws 33499 resssra 33553 rgmoddimOLD 33577 qusdimsum 33595 fldextid 33626 riccrng1 42498 ricdrng1 42505 evlsevl 42548 evlvvval 42550 evlvvvallem 42551 mhphf4 42577 lnmfg 43059 lmhmfgsplit 43063 pwslnmlem2 43070 simpcntrab 46855 |
| Copyright terms: Public domain | W3C validator |