| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressid | Structured version Visualization version GIF version | ||
| Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressid.1 | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| ressid | ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3966 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
| 2 | ressid.1 | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 2 | fvexi 6854 | . 2 ⊢ 𝐵 ∈ V |
| 4 | eqid 2729 | . . 3 ⊢ (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵) | |
| 5 | 4, 2 | ressid2 17180 | . 2 ⊢ ((𝐵 ⊆ 𝐵 ∧ 𝑊 ∈ 𝑋 ∧ 𝐵 ∈ V) → (𝑊 ↾s 𝐵) = 𝑊) |
| 6 | 1, 3, 5 | mp3an13 1454 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-ress 17177 |
| This theorem is referenced by: ressval3d 17192 submgmid 18609 submid 18713 subgid 19036 gaid2 19211 subrngid 20434 subrgid 20458 sdrgid 20677 rlmval2 21075 rlmsca 21081 rlmsca2 21082 pjff 21597 dsmmfi 21623 frlmip 21663 evlrhm 21979 evlsscasrng 21980 evlsvarsrng 21982 evl1sca 22197 evl1var 22199 evls1scasrng 22202 evls1varsrng 22203 pf1ind 22218 evl1gsumadd 22221 evl1varpw 22224 ressply1evl 22233 cnstrcvs 25017 cncvs 25021 rlmbn 25237 ishl2 25246 rrxprds 25265 dchrptlem2 27152 evl1fpws 33506 resssra 33556 rgmoddimOLD 33579 qusdimsum 33597 fldextid 33628 riccrng1 42482 ricdrng1 42489 evlsevl 42532 evlvvval 42534 evlvvvallem 42535 mhphf4 42561 lnmfg 43044 lmhmfgsplit 43048 pwslnmlem2 43055 simpcntrab 46841 |
| Copyright terms: Public domain | W3C validator |