Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressid | Structured version Visualization version GIF version |
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
ressid.1 | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressid | ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3939 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
2 | ressid.1 | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 2 | fvexi 6770 | . 2 ⊢ 𝐵 ∈ V |
4 | eqid 2738 | . . 3 ⊢ (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵) | |
5 | 4, 2 | ressid2 16871 | . 2 ⊢ ((𝐵 ⊆ 𝐵 ∧ 𝑊 ∈ 𝑋 ∧ 𝐵 ∈ V) → (𝑊 ↾s 𝐵) = 𝑊) |
6 | 1, 3, 5 | mp3an13 1450 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-ress 16868 |
This theorem is referenced by: ressval3d 16882 ressval3dOLD 16883 submid 18364 subgid 18672 gaid2 18824 subrgid 19941 sdrgid 19979 rlmval2 20377 rlmsca 20383 rlmsca2 20384 pjff 20829 dsmmfi 20855 frlmip 20895 evlrhm 21216 evlsscasrng 21217 evlsvarsrng 21219 evl1sca 21410 evl1var 21412 evls1scasrng 21415 evls1varsrng 21416 pf1ind 21431 evl1gsumadd 21434 evl1varpw 21437 cnstrcvs 24210 cncvs 24214 rlmbn 24430 ishl2 24439 rrxprds 24458 dchrptlem2 26318 rgmoddim 31595 qusdimsum 31611 fldextid 31636 lnmfg 40823 lmhmfgsplit 40827 pwslnmlem2 40834 simpcntrab 44273 submgmid 45235 |
Copyright terms: Public domain | W3C validator |