![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrngrng | Structured version Visualization version GIF version |
Description: A subring is a non-unital ring. (Contributed by AV, 14-Feb-2025.) |
Ref | Expression |
---|---|
subrngrng.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
Ref | Expression |
---|---|
subrngrng | ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1134 | . 2 ⊢ ((𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)) → (𝑅 ↾s 𝐴) ∈ Rng) | |
2 | eqid 2726 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 2 | issubrng 20524 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅))) |
4 | subrngrng.1 | . . 3 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
5 | 4 | eleq1i 2817 | . 2 ⊢ (𝑆 ∈ Rng ↔ (𝑅 ↾s 𝐴) ∈ Rng) |
6 | 1, 3, 5 | 3imtr4i 291 | 1 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ⊆ wss 3948 ‘cfv 6545 (class class class)co 7415 Basecbs 17207 ↾s cress 17236 Rngcrng 20130 SubRngcsubrng 20522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3421 df-v 3466 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4908 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6497 df-fun 6547 df-fv 6553 df-ov 7418 df-subrng 20523 |
This theorem is referenced by: subrngsubg 20529 subrngmcl 20534 subsubrng 20540 pzriprnglem7 21472 |
Copyright terms: Public domain | W3C validator |