MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrngrcl Structured version   Visualization version   GIF version

Theorem subrngrcl 20572
Description: Reverse closure for a subring predicate. (Contributed by AV, 14-Feb-2025.)
Assertion
Ref Expression
subrngrcl (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)

Proof of Theorem subrngrcl
StepHypRef Expression
1 eqid 2734 . . 3 (Base‘𝑅) = (Base‘𝑅)
21issubrng 20568 . 2 (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)))
32simp1bi 1145 1 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2103  wss 3970  cfv 6572  (class class class)co 7445  Basecbs 17253  s cress 17282  Rngcrng 20174  SubRngcsubrng 20566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-rab 3439  df-v 3484  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5170  df-opab 5232  df-mpt 5253  df-id 5597  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-iota 6524  df-fun 6574  df-fv 6580  df-ov 7448  df-subrng 20567
This theorem is referenced by:  subrngsubg  20573  subrngringnsg  20574  opprsubrng  20580  subrngint  20581  subsubrng  20584
  Copyright terms: Public domain W3C validator