MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrngrcl Structured version   Visualization version   GIF version

Theorem subrngrcl 20490
Description: Reverse closure for a subring predicate. (Contributed by AV, 14-Feb-2025.)
Assertion
Ref Expression
subrngrcl (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)

Proof of Theorem subrngrcl
StepHypRef Expression
1 eqid 2725 . . 3 (Base‘𝑅) = (Base‘𝑅)
21issubrng 20486 . 2 (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)))
32simp1bi 1142 1 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wss 3939  cfv 6541  (class class class)co 7414  Basecbs 17177  s cress 17206  Rngcrng 20094  SubRngcsubrng 20484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6493  df-fun 6543  df-fv 6549  df-ov 7417  df-subrng 20485
This theorem is referenced by:  subrngsubg  20491  subrngringnsg  20492  opprsubrng  20498  subrngint  20499  subsubrng  20502
  Copyright terms: Public domain W3C validator