| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrngsubg | Structured version Visualization version GIF version | ||
| Description: A subring is a subgroup. (Contributed by AV, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| subrngsubg | ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrngrcl 20467 | . . 3 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
| 2 | rnggrp 20074 | . . 3 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Grp) |
| 4 | eqid 2730 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | 4 | subrngss 20464 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 6 | eqid 2730 | . . . 4 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
| 7 | 6 | subrngrng 20466 | . . 3 ⊢ (𝐴 ∈ (SubRng‘𝑅) → (𝑅 ↾s 𝐴) ∈ Rng) |
| 8 | rnggrp 20074 | . . 3 ⊢ ((𝑅 ↾s 𝐴) ∈ Rng → (𝑅 ↾s 𝐴) ∈ Grp) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → (𝑅 ↾s 𝐴) ∈ Grp) |
| 10 | 4 | issubg 19065 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Grp)) |
| 11 | 3, 5, 9, 10 | syl3anbrc 1344 | 1 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 Grpcgrp 18872 SubGrpcsubg 19059 Rngcrng 20068 SubRngcsubrng 20461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-subg 19062 df-abl 19720 df-rng 20069 df-subrng 20462 |
| This theorem is referenced by: subrngringnsg 20469 subrngbas 20470 subrng0 20471 subrngacl 20472 issubrng2 20474 subrngint 20476 rhmimasubrng 20482 rng2idl0 21184 rng2idlsubg0 21187 rngqiprnglinlem2 21209 rngqiprng 21213 rng2idl1cntr 21222 |
| Copyright terms: Public domain | W3C validator |