| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrngsubg | Structured version Visualization version GIF version | ||
| Description: A subring is a subgroup. (Contributed by AV, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| subrngsubg | ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrngrcl 20454 | . . 3 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
| 2 | rnggrp 20061 | . . 3 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Grp) |
| 4 | eqid 2729 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | 4 | subrngss 20451 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 6 | eqid 2729 | . . . 4 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
| 7 | 6 | subrngrng 20453 | . . 3 ⊢ (𝐴 ∈ (SubRng‘𝑅) → (𝑅 ↾s 𝐴) ∈ Rng) |
| 8 | rnggrp 20061 | . . 3 ⊢ ((𝑅 ↾s 𝐴) ∈ Rng → (𝑅 ↾s 𝐴) ∈ Grp) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → (𝑅 ↾s 𝐴) ∈ Grp) |
| 10 | 4 | issubg 19023 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Grp)) |
| 11 | 3, 5, 9, 10 | syl3anbrc 1344 | 1 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 ↾s cress 17159 Grpcgrp 18830 SubGrpcsubg 19017 Rngcrng 20055 SubRngcsubrng 20448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-subg 19020 df-abl 19680 df-rng 20056 df-subrng 20449 |
| This theorem is referenced by: subrngringnsg 20456 subrngbas 20457 subrng0 20458 subrngacl 20459 issubrng2 20461 subrngint 20463 rhmimasubrng 20469 rng2idl0 21192 rng2idlsubg0 21195 rngqiprnglinlem2 21217 rngqiprng 21221 rng2idl1cntr 21230 |
| Copyright terms: Public domain | W3C validator |