MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrngsubg Structured version   Visualization version   GIF version

Theorem subrngsubg 20452
Description: A subring is a subgroup. (Contributed by AV, 14-Feb-2025.)
Assertion
Ref Expression
subrngsubg (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))

Proof of Theorem subrngsubg
StepHypRef Expression
1 subrngrcl 20451 . . 3 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
2 rnggrp 20063 . . 3 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
31, 2syl 17 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Grp)
4 eqid 2726 . . 3 (Base‘𝑅) = (Base‘𝑅)
54subrngss 20448 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
6 eqid 2726 . . . 4 (𝑅s 𝐴) = (𝑅s 𝐴)
76subrngrng 20450 . . 3 (𝐴 ∈ (SubRng‘𝑅) → (𝑅s 𝐴) ∈ Rng)
8 rnggrp 20063 . . 3 ((𝑅s 𝐴) ∈ Rng → (𝑅s 𝐴) ∈ Grp)
97, 8syl 17 . 2 (𝐴 ∈ (SubRng‘𝑅) → (𝑅s 𝐴) ∈ Grp)
104issubg 19053 . 2 (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Grp))
113, 5, 9, 10syl3anbrc 1340 1 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wss 3943  cfv 6537  (class class class)co 7405  Basecbs 17153  s cress 17182  Grpcgrp 18863  SubGrpcsubg 19047  Rngcrng 20057  SubRngcsubrng 20445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fv 6545  df-ov 7408  df-subg 19050  df-abl 19703  df-rng 20058  df-subrng 20446
This theorem is referenced by:  subrngringnsg  20453  subrngbas  20454  subrng0  20455  subrngacl  20456  issubrng2  20458  subrngint  20460  rhmimasubrng  20466  rng2idl0  21124  rng2idlsubg0  21127  rngqiprnglinlem2  21145  rngqiprng  21149  rng2idl1cntr  21158
  Copyright terms: Public domain W3C validator