MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrngsubg Structured version   Visualization version   GIF version

Theorem subrngsubg 20517
Description: A subring is a subgroup. (Contributed by AV, 14-Feb-2025.)
Assertion
Ref Expression
subrngsubg (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))

Proof of Theorem subrngsubg
StepHypRef Expression
1 subrngrcl 20516 . . 3 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
2 rnggrp 20123 . . 3 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
31, 2syl 17 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Grp)
4 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
54subrngss 20513 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
6 eqid 2736 . . . 4 (𝑅s 𝐴) = (𝑅s 𝐴)
76subrngrng 20515 . . 3 (𝐴 ∈ (SubRng‘𝑅) → (𝑅s 𝐴) ∈ Rng)
8 rnggrp 20123 . . 3 ((𝑅s 𝐴) ∈ Rng → (𝑅s 𝐴) ∈ Grp)
97, 8syl 17 . 2 (𝐴 ∈ (SubRng‘𝑅) → (𝑅s 𝐴) ∈ Grp)
104issubg 19114 . 2 (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Grp))
113, 5, 9, 10syl3anbrc 1344 1 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3931  cfv 6536  (class class class)co 7410  Basecbs 17233  s cress 17256  Grpcgrp 18921  SubGrpcsubg 19108  Rngcrng 20117  SubRngcsubrng 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-subg 19111  df-abl 19769  df-rng 20118  df-subrng 20511
This theorem is referenced by:  subrngringnsg  20518  subrngbas  20519  subrng0  20520  subrngacl  20521  issubrng2  20523  subrngint  20525  rhmimasubrng  20531  rng2idl0  21233  rng2idlsubg0  21236  rngqiprnglinlem2  21258  rngqiprng  21262  rng2idl1cntr  21271
  Copyright terms: Public domain W3C validator