MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrngsubg Structured version   Visualization version   GIF version

Theorem subrngsubg 20460
Description: A subring is a subgroup. (Contributed by AV, 14-Feb-2025.)
Assertion
Ref Expression
subrngsubg (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))

Proof of Theorem subrngsubg
StepHypRef Expression
1 subrngrcl 20459 . . 3 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
2 rnggrp 20069 . . 3 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
31, 2syl 17 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Grp)
4 eqid 2730 . . 3 (Base‘𝑅) = (Base‘𝑅)
54subrngss 20456 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
6 eqid 2730 . . . 4 (𝑅s 𝐴) = (𝑅s 𝐴)
76subrngrng 20458 . . 3 (𝐴 ∈ (SubRng‘𝑅) → (𝑅s 𝐴) ∈ Rng)
8 rnggrp 20069 . . 3 ((𝑅s 𝐴) ∈ Rng → (𝑅s 𝐴) ∈ Grp)
97, 8syl 17 . 2 (𝐴 ∈ (SubRng‘𝑅) → (𝑅s 𝐴) ∈ Grp)
104issubg 19031 . 2 (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Grp))
113, 5, 9, 10syl3anbrc 1344 1 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  wss 3900  cfv 6477  (class class class)co 7341  Basecbs 17112  s cress 17133  Grpcgrp 18838  SubGrpcsubg 19025  Rngcrng 20063  SubRngcsubrng 20453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-subg 19028  df-abl 19688  df-rng 20064  df-subrng 20454
This theorem is referenced by:  subrngringnsg  20461  subrngbas  20462  subrng0  20463  subrngacl  20464  issubrng2  20466  subrngint  20468  rhmimasubrng  20474  rng2idl0  21197  rng2idlsubg0  21200  rngqiprnglinlem2  21222  rngqiprng  21226  rng2idl1cntr  21235
  Copyright terms: Public domain W3C validator