MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprsubrng Structured version   Visualization version   GIF version

Theorem opprsubrng 20559
Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprsubrng.o 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprsubrng (SubRng‘𝑅) = (SubRng‘𝑂)

Proof of Theorem opprsubrng
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngrcl 20551 . . 3 (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
2 subrngrcl 20551 . . . 4 (𝑥 ∈ (SubRng‘𝑂) → 𝑂 ∈ Rng)
3 opprsubrng.o . . . . 5 𝑂 = (oppr𝑅)
43opprrngb 20346 . . . 4 (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng)
52, 4sylibr 234 . . 3 (𝑥 ∈ (SubRng‘𝑂) → 𝑅 ∈ Rng)
63opprsubg 20352 . . . . . . 7 (SubGrp‘𝑅) = (SubGrp‘𝑂)
76a1i 11 . . . . . 6 (𝑅 ∈ Rng → (SubGrp‘𝑅) = (SubGrp‘𝑂))
87eleq2d 2827 . . . . 5 (𝑅 ∈ Rng → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂)))
9 ralcom 3289 . . . . . . 7 (∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦𝑥𝑧𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥)
10 eqid 2737 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2737 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
12 eqid 2737 . . . . . . . . . 10 (.r𝑂) = (.r𝑂)
1310, 11, 3, 12opprmul 20337 . . . . . . . . 9 (𝑦(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑦)
1413eleq1i 2832 . . . . . . . 8 ((𝑦(.r𝑂)𝑧) ∈ 𝑥 ↔ (𝑧(.r𝑅)𝑦) ∈ 𝑥)
15142ralbii 3128 . . . . . . 7 (∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥 ↔ ∀𝑦𝑥𝑧𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥)
169, 15bitr4i 278 . . . . . 6 (∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥)
1716a1i 11 . . . . 5 (𝑅 ∈ Rng → (∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥))
188, 17anbi12d 632 . . . 4 (𝑅 ∈ Rng → ((𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥)))
1910, 11issubrng2 20558 . . . 4 (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥)))
203, 10opprbas 20341 . . . . . 6 (Base‘𝑅) = (Base‘𝑂)
2120, 12issubrng2 20558 . . . . 5 (𝑂 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥)))
224, 21sylbi 217 . . . 4 (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥)))
2318, 19, 223bitr4d 311 . . 3 (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂)))
241, 5, 23pm5.21nii 378 . 2 (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂))
2524eqriv 2734 1 (SubRng‘𝑅) = (SubRng‘𝑂)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  cfv 6561  (class class class)co 7431  Basecbs 17247  .rcmulr 17298  SubGrpcsubg 19138  Rngcrng 20149  opprcoppr 20333  SubRngcsubrng 20545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-subg 19141  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-oppr 20334  df-subrng 20546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator