![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprsubrng | Structured version Visualization version GIF version |
Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.) |
Ref | Expression |
---|---|
opprsubrng.o | ⊢ 𝑂 = (oppr‘𝑅) |
Ref | Expression |
---|---|
opprsubrng | ⊢ (SubRng‘𝑅) = (SubRng‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrngrcl 20487 | . . 3 ⊢ (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
2 | subrngrcl 20487 | . . . 4 ⊢ (𝑥 ∈ (SubRng‘𝑂) → 𝑂 ∈ Rng) | |
3 | opprsubrng.o | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
4 | 3 | opprrngb 20284 | . . . 4 ⊢ (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng) |
5 | 2, 4 | sylibr 233 | . . 3 ⊢ (𝑥 ∈ (SubRng‘𝑂) → 𝑅 ∈ Rng) |
6 | 3 | opprsubg 20290 | . . . . . . 7 ⊢ (SubGrp‘𝑅) = (SubGrp‘𝑂) |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ Rng → (SubGrp‘𝑅) = (SubGrp‘𝑂)) |
8 | 7 | eleq2d 2815 | . . . . 5 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂))) |
9 | ralcom 3283 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) | |
10 | eqid 2728 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
11 | eqid 2728 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
12 | eqid 2728 | . . . . . . . . . 10 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
13 | 10, 11, 3, 12 | opprmul 20275 | . . . . . . . . 9 ⊢ (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦) |
14 | 13 | eleq1i 2820 | . . . . . . . 8 ⊢ ((𝑦(.r‘𝑂)𝑧) ∈ 𝑥 ↔ (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) |
15 | 14 | 2ralbii 3125 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) |
16 | 9, 15 | bitr4i 278 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥) |
17 | 16 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Rng → (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥)) |
18 | 8, 17 | anbi12d 631 | . . . 4 ⊢ (𝑅 ∈ Rng → ((𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
19 | 10, 11 | issubrng2 20494 | . . . 4 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥))) |
20 | 3, 10 | opprbas 20279 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑂) |
21 | 20, 12 | issubrng2 20494 | . . . . 5 ⊢ (𝑂 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
22 | 4, 21 | sylbi 216 | . . . 4 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
23 | 18, 19, 22 | 3bitr4d 311 | . . 3 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂))) |
24 | 1, 5, 23 | pm5.21nii 378 | . 2 ⊢ (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂)) |
25 | 24 | eqriv 2725 | 1 ⊢ (SubRng‘𝑅) = (SubRng‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 ‘cfv 6548 (class class class)co 7420 Basecbs 17179 .rcmulr 17233 SubGrpcsubg 19074 Rngcrng 20091 opprcoppr 20271 SubRngcsubrng 20481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-tpos 8231 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18892 df-subg 19077 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-oppr 20272 df-subrng 20482 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |