![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprsubrng | Structured version Visualization version GIF version |
Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.) |
Ref | Expression |
---|---|
opprsubrng.o | ⊢ 𝑂 = (oppr‘𝑅) |
Ref | Expression |
---|---|
opprsubrng | ⊢ (SubRng‘𝑅) = (SubRng‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrngrcl 20451 | . . 3 ⊢ (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
2 | subrngrcl 20451 | . . . 4 ⊢ (𝑥 ∈ (SubRng‘𝑂) → 𝑂 ∈ Rng) | |
3 | opprsubrng.o | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
4 | 3 | opprrngb 20248 | . . . 4 ⊢ (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng) |
5 | 2, 4 | sylibr 233 | . . 3 ⊢ (𝑥 ∈ (SubRng‘𝑂) → 𝑅 ∈ Rng) |
6 | 3 | opprsubg 20254 | . . . . . . 7 ⊢ (SubGrp‘𝑅) = (SubGrp‘𝑂) |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ Rng → (SubGrp‘𝑅) = (SubGrp‘𝑂)) |
8 | 7 | eleq2d 2813 | . . . . 5 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂))) |
9 | ralcom 3280 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) | |
10 | eqid 2726 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
11 | eqid 2726 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
12 | eqid 2726 | . . . . . . . . . 10 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
13 | 10, 11, 3, 12 | opprmul 20239 | . . . . . . . . 9 ⊢ (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦) |
14 | 13 | eleq1i 2818 | . . . . . . . 8 ⊢ ((𝑦(.r‘𝑂)𝑧) ∈ 𝑥 ↔ (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) |
15 | 14 | 2ralbii 3122 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) |
16 | 9, 15 | bitr4i 278 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥) |
17 | 16 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Rng → (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥)) |
18 | 8, 17 | anbi12d 630 | . . . 4 ⊢ (𝑅 ∈ Rng → ((𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
19 | 10, 11 | issubrng2 20458 | . . . 4 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥))) |
20 | 3, 10 | opprbas 20243 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑂) |
21 | 20, 12 | issubrng2 20458 | . . . . 5 ⊢ (𝑂 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
22 | 4, 21 | sylbi 216 | . . . 4 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
23 | 18, 19, 22 | 3bitr4d 311 | . . 3 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂))) |
24 | 1, 5, 23 | pm5.21nii 378 | . 2 ⊢ (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂)) |
25 | 24 | eqriv 2723 | 1 ⊢ (SubRng‘𝑅) = (SubRng‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ‘cfv 6537 (class class class)co 7405 Basecbs 17153 .rcmulr 17207 SubGrpcsubg 19047 Rngcrng 20057 opprcoppr 20235 SubRngcsubrng 20445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-subg 19050 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-oppr 20236 df-subrng 20446 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |