![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opprsubrng | Structured version Visualization version GIF version |
Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.) |
Ref | Expression |
---|---|
opprsubrng.o | ⊢ 𝑂 = (oppr‘𝑅) |
Ref | Expression |
---|---|
opprsubrng | ⊢ (SubRng‘𝑅) = (SubRng‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrngrcl 46720 | . . 3 ⊢ (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
2 | subrngrcl 46720 | . . . 4 ⊢ (𝑥 ∈ (SubRng‘𝑂) → 𝑂 ∈ Rng) | |
3 | opprsubrng.o | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
4 | 3 | opprrngb 46665 | . . . 4 ⊢ (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng) |
5 | 2, 4 | sylibr 233 | . . 3 ⊢ (𝑥 ∈ (SubRng‘𝑂) → 𝑅 ∈ Rng) |
6 | 3 | opprsubg 20165 | . . . . . . 7 ⊢ (SubGrp‘𝑅) = (SubGrp‘𝑂) |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ Rng → (SubGrp‘𝑅) = (SubGrp‘𝑂)) |
8 | 7 | eleq2d 2819 | . . . . 5 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂))) |
9 | ralcom 3286 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) | |
10 | eqid 2732 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
11 | eqid 2732 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
12 | eqid 2732 | . . . . . . . . . 10 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
13 | 10, 11, 3, 12 | opprmul 20152 | . . . . . . . . 9 ⊢ (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦) |
14 | 13 | eleq1i 2824 | . . . . . . . 8 ⊢ ((𝑦(.r‘𝑂)𝑧) ∈ 𝑥 ↔ (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) |
15 | 14 | 2ralbii 3128 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) |
16 | 9, 15 | bitr4i 277 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥) |
17 | 16 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Rng → (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥)) |
18 | 8, 17 | anbi12d 631 | . . . 4 ⊢ (𝑅 ∈ Rng → ((𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
19 | 10, 11 | issubrng2 46727 | . . . 4 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥))) |
20 | 3, 10 | opprbas 20156 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑂) |
21 | 20, 12 | issubrng2 46727 | . . . . 5 ⊢ (𝑂 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
22 | 4, 21 | sylbi 216 | . . . 4 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
23 | 18, 19, 22 | 3bitr4d 310 | . . 3 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂))) |
24 | 1, 5, 23 | pm5.21nii 379 | . 2 ⊢ (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂)) |
25 | 24 | eqriv 2729 | 1 ⊢ (SubRng‘𝑅) = (SubRng‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ‘cfv 6543 (class class class)co 7408 Basecbs 17143 .rcmulr 17197 SubGrpcsubg 18999 opprcoppr 20148 Rngcrng 46638 SubRngcsubrng 46714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-subg 19002 df-cmn 19649 df-abl 19650 df-mgp 19987 df-oppr 20149 df-rng 46639 df-subrng 46715 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |