MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubrng Structured version   Visualization version   GIF version

Theorem subsubrng 20504
Description: A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
subsubrng.s 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subsubrng (𝐴 ∈ (SubRng‘𝑅) → (𝐵 ∈ (SubRng‘𝑆) ↔ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)))

Proof of Theorem subsubrng
StepHypRef Expression
1 subrngrcl 20492 . . . . 5 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
21adantr 479 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝑅 ∈ Rng)
3 eqid 2725 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
43subrngss 20489 . . . . . . . 8 (𝐵 ∈ (SubRng‘𝑆) → 𝐵 ⊆ (Base‘𝑆))
54adantl 480 . . . . . . 7 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐵 ⊆ (Base‘𝑆))
6 subsubrng.s . . . . . . . . 9 𝑆 = (𝑅s 𝐴)
76subrngbas 20495 . . . . . . . 8 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 = (Base‘𝑆))
87adantr 479 . . . . . . 7 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐴 = (Base‘𝑆))
95, 8sseqtrrd 4019 . . . . . 6 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐵𝐴)
106oveq1i 7427 . . . . . . 7 (𝑆s 𝐵) = ((𝑅s 𝐴) ↾s 𝐵)
11 ressabs 17229 . . . . . . 7 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴) → ((𝑅s 𝐴) ↾s 𝐵) = (𝑅s 𝐵))
1210, 11eqtrid 2777 . . . . . 6 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴) → (𝑆s 𝐵) = (𝑅s 𝐵))
139, 12syldan 589 . . . . 5 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → (𝑆s 𝐵) = (𝑅s 𝐵))
14 eqid 2725 . . . . . . 7 (𝑆s 𝐵) = (𝑆s 𝐵)
1514subrngrng 20491 . . . . . 6 (𝐵 ∈ (SubRng‘𝑆) → (𝑆s 𝐵) ∈ Rng)
1615adantl 480 . . . . 5 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → (𝑆s 𝐵) ∈ Rng)
1713, 16eqeltrrd 2826 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → (𝑅s 𝐵) ∈ Rng)
18 eqid 2725 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
1918subrngss 20489 . . . . . 6 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
2019adantr 479 . . . . 5 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐴 ⊆ (Base‘𝑅))
219, 20sstrd 3988 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐵 ⊆ (Base‘𝑅))
2218issubrng 20488 . . . 4 (𝐵 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐵) ∈ Rng ∧ 𝐵 ⊆ (Base‘𝑅)))
232, 17, 21, 22syl3anbrc 1340 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐵 ∈ (SubRng‘𝑅))
2423, 9jca 510 . 2 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴))
256subrngrng 20491 . . . 4 (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng)
2625adantr 479 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → 𝑆 ∈ Rng)
2712adantrl 714 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → (𝑆s 𝐵) = (𝑅s 𝐵))
28 eqid 2725 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
2928subrngrng 20491 . . . . 5 (𝐵 ∈ (SubRng‘𝑅) → (𝑅s 𝐵) ∈ Rng)
3029ad2antrl 726 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → (𝑅s 𝐵) ∈ Rng)
3127, 30eqeltrd 2825 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → (𝑆s 𝐵) ∈ Rng)
32 simprr 771 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → 𝐵𝐴)
337adantr 479 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → 𝐴 = (Base‘𝑆))
3432, 33sseqtrd 4018 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → 𝐵 ⊆ (Base‘𝑆))
353issubrng 20488 . . 3 (𝐵 ∈ (SubRng‘𝑆) ↔ (𝑆 ∈ Rng ∧ (𝑆s 𝐵) ∈ Rng ∧ 𝐵 ⊆ (Base‘𝑆)))
3626, 31, 34, 35syl3anbrc 1340 . 2 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → 𝐵 ∈ (SubRng‘𝑆))
3724, 36impbida 799 1 (𝐴 ∈ (SubRng‘𝑅) → (𝐵 ∈ (SubRng‘𝑆) ↔ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wss 3945  cfv 6547  (class class class)co 7417  Basecbs 17179  s cress 17208  Rngcrng 20096  SubRngcsubrng 20486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-1cn 11196  ax-addcl 11198
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12243  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-subg 19082  df-abl 19742  df-rng 20097  df-subrng 20487
This theorem is referenced by:  subsubrng2  20505
  Copyright terms: Public domain W3C validator