MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubrng Structured version   Visualization version   GIF version

Theorem subsubrng 20466
Description: A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
subsubrng.s 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subsubrng (𝐴 ∈ (SubRng‘𝑅) → (𝐵 ∈ (SubRng‘𝑆) ↔ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)))

Proof of Theorem subsubrng
StepHypRef Expression
1 subrngrcl 20454 . . . . 5 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
21adantr 480 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝑅 ∈ Rng)
3 eqid 2729 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
43subrngss 20451 . . . . . . . 8 (𝐵 ∈ (SubRng‘𝑆) → 𝐵 ⊆ (Base‘𝑆))
54adantl 481 . . . . . . 7 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐵 ⊆ (Base‘𝑆))
6 subsubrng.s . . . . . . . . 9 𝑆 = (𝑅s 𝐴)
76subrngbas 20457 . . . . . . . 8 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 = (Base‘𝑆))
87adantr 480 . . . . . . 7 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐴 = (Base‘𝑆))
95, 8sseqtrrd 3975 . . . . . 6 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐵𝐴)
106oveq1i 7363 . . . . . . 7 (𝑆s 𝐵) = ((𝑅s 𝐴) ↾s 𝐵)
11 ressabs 17177 . . . . . . 7 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴) → ((𝑅s 𝐴) ↾s 𝐵) = (𝑅s 𝐵))
1210, 11eqtrid 2776 . . . . . 6 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴) → (𝑆s 𝐵) = (𝑅s 𝐵))
139, 12syldan 591 . . . . 5 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → (𝑆s 𝐵) = (𝑅s 𝐵))
14 eqid 2729 . . . . . . 7 (𝑆s 𝐵) = (𝑆s 𝐵)
1514subrngrng 20453 . . . . . 6 (𝐵 ∈ (SubRng‘𝑆) → (𝑆s 𝐵) ∈ Rng)
1615adantl 481 . . . . 5 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → (𝑆s 𝐵) ∈ Rng)
1713, 16eqeltrrd 2829 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → (𝑅s 𝐵) ∈ Rng)
18 eqid 2729 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
1918subrngss 20451 . . . . . 6 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
2019adantr 480 . . . . 5 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐴 ⊆ (Base‘𝑅))
219, 20sstrd 3948 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐵 ⊆ (Base‘𝑅))
2218issubrng 20450 . . . 4 (𝐵 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐵) ∈ Rng ∧ 𝐵 ⊆ (Base‘𝑅)))
232, 17, 21, 22syl3anbrc 1344 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐵 ∈ (SubRng‘𝑅))
2423, 9jca 511 . 2 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴))
256subrngrng 20453 . . . 4 (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng)
2625adantr 480 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → 𝑆 ∈ Rng)
2712adantrl 716 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → (𝑆s 𝐵) = (𝑅s 𝐵))
28 eqid 2729 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
2928subrngrng 20453 . . . . 5 (𝐵 ∈ (SubRng‘𝑅) → (𝑅s 𝐵) ∈ Rng)
3029ad2antrl 728 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → (𝑅s 𝐵) ∈ Rng)
3127, 30eqeltrd 2828 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → (𝑆s 𝐵) ∈ Rng)
32 simprr 772 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → 𝐵𝐴)
337adantr 480 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → 𝐴 = (Base‘𝑆))
3432, 33sseqtrd 3974 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → 𝐵 ⊆ (Base‘𝑆))
353issubrng 20450 . . 3 (𝐵 ∈ (SubRng‘𝑆) ↔ (𝑆 ∈ Rng ∧ (𝑆s 𝐵) ∈ Rng ∧ 𝐵 ⊆ (Base‘𝑆)))
3626, 31, 34, 35syl3anbrc 1344 . 2 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → 𝐵 ∈ (SubRng‘𝑆))
3724, 36impbida 800 1 (𝐴 ∈ (SubRng‘𝑅) → (𝐵 ∈ (SubRng‘𝑆) ↔ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3905  cfv 6486  (class class class)co 7353  Basecbs 17138  s cress 17159  Rngcrng 20055  SubRngcsubrng 20448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-1cn 11086  ax-addcl 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-nn 12147  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-subg 19020  df-abl 19680  df-rng 20056  df-subrng 20449
This theorem is referenced by:  subsubrng2  20467
  Copyright terms: Public domain W3C validator