MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrngmcl Structured version   Visualization version   GIF version

Theorem subrngmcl 20466
Description: A subring is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) Generalization of subrgmcl 20493. (Revised by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
subrngmcl.p · = (.r𝑅)
Assertion
Ref Expression
subrngmcl ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → (𝑋 · 𝑌) ∈ 𝐴)

Proof of Theorem subrngmcl
StepHypRef Expression
1 eqid 2729 . . . . 5 (𝑅s 𝐴) = (𝑅s 𝐴)
21subrngrng 20459 . . . 4 (𝐴 ∈ (SubRng‘𝑅) → (𝑅s 𝐴) ∈ Rng)
323ad2ant1 1133 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → (𝑅s 𝐴) ∈ Rng)
4 simp2 1137 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → 𝑋𝐴)
51subrngbas 20463 . . . . 5 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 = (Base‘(𝑅s 𝐴)))
653ad2ant1 1133 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → 𝐴 = (Base‘(𝑅s 𝐴)))
74, 6eleqtrd 2830 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → 𝑋 ∈ (Base‘(𝑅s 𝐴)))
8 simp3 1138 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → 𝑌𝐴)
98, 6eleqtrd 2830 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → 𝑌 ∈ (Base‘(𝑅s 𝐴)))
10 eqid 2729 . . . 4 (Base‘(𝑅s 𝐴)) = (Base‘(𝑅s 𝐴))
11 eqid 2729 . . . 4 (.r‘(𝑅s 𝐴)) = (.r‘(𝑅s 𝐴))
1210, 11rngcl 20073 . . 3 (((𝑅s 𝐴) ∈ Rng ∧ 𝑋 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑌 ∈ (Base‘(𝑅s 𝐴))) → (𝑋(.r‘(𝑅s 𝐴))𝑌) ∈ (Base‘(𝑅s 𝐴)))
133, 7, 9, 12syl3anc 1373 . 2 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → (𝑋(.r‘(𝑅s 𝐴))𝑌) ∈ (Base‘(𝑅s 𝐴)))
14 subrngmcl.p . . . . 5 · = (.r𝑅)
151, 14ressmulr 17270 . . . 4 (𝐴 ∈ (SubRng‘𝑅) → · = (.r‘(𝑅s 𝐴)))
16153ad2ant1 1133 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → · = (.r‘(𝑅s 𝐴)))
1716oveqd 7404 . 2 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → (𝑋 · 𝑌) = (𝑋(.r‘(𝑅s 𝐴))𝑌))
1813, 17, 63eltr4d 2843 1 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → (𝑋 · 𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  .rcmulr 17221  Rngcrng 20061  SubRngcsubrng 20454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-mgm 18567  df-sgrp 18646  df-subg 19055  df-abl 19713  df-mgp 20050  df-rng 20062  df-subrng 20455
This theorem is referenced by:  issubrng2  20467  subrngint  20469  rhmimasubrnglem  20474  rhmimasubrng  20475  subrgmcl  20493
  Copyright terms: Public domain W3C validator