MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrngmcl Structured version   Visualization version   GIF version

Theorem subrngmcl 20557
Description: A subring is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) Generalization of subrgmcl 20584. (Revised by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
subrngmcl.p · = (.r𝑅)
Assertion
Ref Expression
subrngmcl ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → (𝑋 · 𝑌) ∈ 𝐴)

Proof of Theorem subrngmcl
StepHypRef Expression
1 eqid 2737 . . . . 5 (𝑅s 𝐴) = (𝑅s 𝐴)
21subrngrng 20550 . . . 4 (𝐴 ∈ (SubRng‘𝑅) → (𝑅s 𝐴) ∈ Rng)
323ad2ant1 1134 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → (𝑅s 𝐴) ∈ Rng)
4 simp2 1138 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → 𝑋𝐴)
51subrngbas 20554 . . . . 5 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 = (Base‘(𝑅s 𝐴)))
653ad2ant1 1134 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → 𝐴 = (Base‘(𝑅s 𝐴)))
74, 6eleqtrd 2843 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → 𝑋 ∈ (Base‘(𝑅s 𝐴)))
8 simp3 1139 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → 𝑌𝐴)
98, 6eleqtrd 2843 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → 𝑌 ∈ (Base‘(𝑅s 𝐴)))
10 eqid 2737 . . . 4 (Base‘(𝑅s 𝐴)) = (Base‘(𝑅s 𝐴))
11 eqid 2737 . . . 4 (.r‘(𝑅s 𝐴)) = (.r‘(𝑅s 𝐴))
1210, 11rngcl 20161 . . 3 (((𝑅s 𝐴) ∈ Rng ∧ 𝑋 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑌 ∈ (Base‘(𝑅s 𝐴))) → (𝑋(.r‘(𝑅s 𝐴))𝑌) ∈ (Base‘(𝑅s 𝐴)))
133, 7, 9, 12syl3anc 1373 . 2 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → (𝑋(.r‘(𝑅s 𝐴))𝑌) ∈ (Base‘(𝑅s 𝐴)))
14 subrngmcl.p . . . . 5 · = (.r𝑅)
151, 14ressmulr 17351 . . . 4 (𝐴 ∈ (SubRng‘𝑅) → · = (.r‘(𝑅s 𝐴)))
16153ad2ant1 1134 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → · = (.r‘(𝑅s 𝐴)))
1716oveqd 7448 . 2 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → (𝑋 · 𝑌) = (𝑋(.r‘(𝑅s 𝐴))𝑌))
1813, 17, 63eltr4d 2856 1 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → (𝑋 · 𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  .rcmulr 17298  Rngcrng 20149  SubRngcsubrng 20545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-mgm 18653  df-sgrp 18732  df-subg 19141  df-abl 19801  df-mgp 20138  df-rng 20150  df-subrng 20546
This theorem is referenced by:  issubrng2  20558  subrngint  20560  rhmimasubrnglem  20565  rhmimasubrng  20566  subrgmcl  20584
  Copyright terms: Public domain W3C validator