| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supxrcl | Structured version Visualization version GIF version | ||
| Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005.) |
| Ref | Expression |
|---|---|
| supxrcl | ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso 13157 | . . 3 ⊢ < Or ℝ* | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ⊆ ℝ* → < Or ℝ*) |
| 3 | xrsupss 13325 | . 2 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
| 4 | 2, 3 | supcl 9470 | 1 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3926 Or wor 5560 supcsup 9452 ℝ*cxr 11268 < clt 11269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 |
| This theorem is referenced by: supxrun 13332 supxrmnf 13333 supxrbnd1 13337 supxrbnd2 13338 supxrub 13340 supxrleub 13342 supxrre 13343 supxrbnd 13344 supxrgtmnf 13345 supxrre1 13346 supxrre2 13347 supxrss 13348 ixxub 13383 limsupgord 15488 limsupcl 15489 limsupgf 15491 prdsdsf 24306 xpsdsval 24320 xrge0tsms 24774 elovolm 25428 ovolmge0 25430 ovolgelb 25433 ovollb2lem 25441 ovolunlem1a 25449 ovoliunlem1 25455 ovoliunlem2 25456 ovoliun 25458 ovolscalem1 25466 ovolicc1 25469 ovolicc2lem4 25473 voliunlem2 25504 voliunlem3 25505 ioombl1lem2 25512 uniioovol 25532 uniiccvol 25533 uniioombllem1 25534 uniioombllem3 25538 itg2cl 25685 itg2seq 25695 itg2monolem2 25704 itg2monolem3 25705 itg2mono 25706 mdeglt 26022 mdegxrcl 26024 radcnvcl 26378 nmoxr 30747 nmopxr 31847 nmfnxr 31860 xrofsup 32744 supxrnemnf 32745 xrge0tsmsd 33056 mblfinlem3 37683 mblfinlem4 37684 ismblfin 37685 itg2addnclem 37695 itg2gt0cn 37699 binomcxplemdvbinom 44377 binomcxplemcvg 44378 binomcxplemnotnn0 44380 supxrcld 45131 supxrgere 45360 supxrgelem 45364 supxrge 45365 suplesup 45366 suplesup2 45403 supxrcli 45461 liminfval2 45797 sge0cl 46410 sge0xaddlem1 46462 sge0xaddlem2 46463 sge0reuz 46476 |
| Copyright terms: Public domain | W3C validator |