![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supxrcl | Structured version Visualization version GIF version |
Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005.) |
Ref | Expression |
---|---|
supxrcl | ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 13203 | . . 3 ⊢ < Or ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ⊆ ℝ* → < Or ℝ*) |
3 | xrsupss 13371 | . 2 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
4 | 2, 3 | supcl 9527 | 1 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 Or wor 5606 supcsup 9509 ℝ*cxr 11323 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 |
This theorem is referenced by: supxrun 13378 supxrmnf 13379 supxrbnd1 13383 supxrbnd2 13384 supxrub 13386 supxrleub 13388 supxrre 13389 supxrbnd 13390 supxrgtmnf 13391 supxrre1 13392 supxrre2 13393 supxrss 13394 ixxub 13428 limsupgord 15518 limsupcl 15519 limsupgf 15521 prdsdsf 24398 xpsdsval 24412 xrge0tsms 24875 elovolm 25529 ovolmge0 25531 ovolgelb 25534 ovollb2lem 25542 ovolunlem1a 25550 ovoliunlem1 25556 ovoliunlem2 25557 ovoliun 25559 ovolscalem1 25567 ovolicc1 25570 ovolicc2lem4 25574 voliunlem2 25605 voliunlem3 25606 ioombl1lem2 25613 uniioovol 25633 uniiccvol 25634 uniioombllem1 25635 uniioombllem3 25639 itg2cl 25787 itg2seq 25797 itg2monolem2 25806 itg2monolem3 25807 itg2mono 25808 mdeglt 26124 mdegxrcl 26126 radcnvcl 26478 nmoxr 30798 nmopxr 31898 nmfnxr 31911 xrofsup 32774 supxrnemnf 32775 xrge0tsmsd 33041 mblfinlem3 37619 mblfinlem4 37620 ismblfin 37621 itg2addnclem 37631 itg2gt0cn 37635 binomcxplemdvbinom 44322 binomcxplemcvg 44323 binomcxplemnotnn0 44325 supxrcld 45009 supxrgere 45248 supxrgelem 45252 supxrge 45253 suplesup 45254 suplesup2 45291 supxrcli 45349 liminfval2 45689 liminflelimsuplem 45696 sge0cl 46302 sge0xaddlem1 46354 sge0xaddlem2 46355 sge0reuz 46368 |
Copyright terms: Public domain | W3C validator |