| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supxrcl | Structured version Visualization version GIF version | ||
| Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005.) |
| Ref | Expression |
|---|---|
| supxrcl | ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso 13108 | . . 3 ⊢ < Or ℝ* | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ⊆ ℝ* → < Or ℝ*) |
| 3 | xrsupss 13276 | . 2 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
| 4 | 2, 3 | supcl 9416 | 1 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3917 Or wor 5548 supcsup 9398 ℝ*cxr 11214 < clt 11215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 |
| This theorem is referenced by: supxrun 13283 supxrmnf 13284 supxrbnd1 13288 supxrbnd2 13289 supxrub 13291 supxrleub 13293 supxrre 13294 supxrbnd 13295 supxrgtmnf 13296 supxrre1 13297 supxrre2 13298 supxrss 13299 ixxub 13334 limsupgord 15445 limsupcl 15446 limsupgf 15448 prdsdsf 24262 xpsdsval 24276 xrge0tsms 24730 elovolm 25383 ovolmge0 25385 ovolgelb 25388 ovollb2lem 25396 ovolunlem1a 25404 ovoliunlem1 25410 ovoliunlem2 25411 ovoliun 25413 ovolscalem1 25421 ovolicc1 25424 ovolicc2lem4 25428 voliunlem2 25459 voliunlem3 25460 ioombl1lem2 25467 uniioovol 25487 uniiccvol 25488 uniioombllem1 25489 uniioombllem3 25493 itg2cl 25640 itg2seq 25650 itg2monolem2 25659 itg2monolem3 25660 itg2mono 25661 mdeglt 25977 mdegxrcl 25979 radcnvcl 26333 nmoxr 30702 nmopxr 31802 nmfnxr 31815 xrofsup 32697 supxrnemnf 32698 xrge0tsmsd 33009 mblfinlem3 37660 mblfinlem4 37661 ismblfin 37662 itg2addnclem 37672 itg2gt0cn 37676 binomcxplemdvbinom 44349 binomcxplemcvg 44350 binomcxplemnotnn0 44352 supxrcld 45108 supxrgere 45336 supxrgelem 45340 supxrge 45341 suplesup 45342 suplesup2 45379 supxrcli 45437 liminfval2 45773 sge0cl 46386 sge0xaddlem1 46438 sge0xaddlem2 46439 sge0reuz 46452 |
| Copyright terms: Public domain | W3C validator |