Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supxrcl | Structured version Visualization version GIF version |
Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005.) |
Ref | Expression |
---|---|
supxrcl | ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 12875 | . . 3 ⊢ < Or ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ⊆ ℝ* → < Or ℝ*) |
3 | xrsupss 13043 | . 2 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
4 | 2, 3 | supcl 9217 | 1 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3887 Or wor 5502 supcsup 9199 ℝ*cxr 11008 < clt 11009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 |
This theorem is referenced by: supxrun 13050 supxrmnf 13051 supxrbnd1 13055 supxrbnd2 13056 supxrub 13058 supxrleub 13060 supxrre 13061 supxrbnd 13062 supxrgtmnf 13063 supxrre1 13064 supxrre2 13065 supxrss 13066 ixxub 13100 limsupgord 15181 limsupcl 15182 limsupgf 15184 prdsdsf 23520 xpsdsval 23534 xrge0tsms 23997 elovolm 24639 ovolmge0 24641 ovolgelb 24644 ovollb2lem 24652 ovolunlem1a 24660 ovoliunlem1 24666 ovoliunlem2 24667 ovoliun 24669 ovolscalem1 24677 ovolicc1 24680 ovolicc2lem4 24684 voliunlem2 24715 voliunlem3 24716 ioombl1lem2 24723 uniioovol 24743 uniiccvol 24744 uniioombllem1 24745 uniioombllem3 24749 itg2cl 24897 itg2seq 24907 itg2monolem2 24916 itg2monolem3 24917 itg2mono 24918 mdeglt 25230 mdegxrcl 25232 radcnvcl 25576 nmoxr 29128 nmopxr 30228 nmfnxr 30241 xrofsup 31090 supxrnemnf 31091 xrge0tsmsd 31317 mblfinlem3 35816 mblfinlem4 35817 ismblfin 35818 itg2addnclem 35828 itg2gt0cn 35832 binomcxplemdvbinom 41971 binomcxplemcvg 41972 binomcxplemnotnn0 41974 supxrcld 42657 supxrgere 42872 supxrgelem 42876 supxrge 42877 suplesup 42878 suplesup2 42915 supxrcli 42974 liminfval2 43309 liminflelimsuplem 43316 sge0cl 43919 sge0xaddlem1 43971 sge0xaddlem2 43972 sge0reuz 43985 |
Copyright terms: Public domain | W3C validator |