![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supxrcl | Structured version Visualization version GIF version |
Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005.) |
Ref | Expression |
---|---|
supxrcl | ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 13180 | . . 3 ⊢ < Or ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ⊆ ℝ* → < Or ℝ*) |
3 | xrsupss 13348 | . 2 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
4 | 2, 3 | supcl 9496 | 1 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3963 Or wor 5596 supcsup 9478 ℝ*cxr 11292 < clt 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 |
This theorem is referenced by: supxrun 13355 supxrmnf 13356 supxrbnd1 13360 supxrbnd2 13361 supxrub 13363 supxrleub 13365 supxrre 13366 supxrbnd 13367 supxrgtmnf 13368 supxrre1 13369 supxrre2 13370 supxrss 13371 ixxub 13405 limsupgord 15505 limsupcl 15506 limsupgf 15508 prdsdsf 24393 xpsdsval 24407 xrge0tsms 24870 elovolm 25524 ovolmge0 25526 ovolgelb 25529 ovollb2lem 25537 ovolunlem1a 25545 ovoliunlem1 25551 ovoliunlem2 25552 ovoliun 25554 ovolscalem1 25562 ovolicc1 25565 ovolicc2lem4 25569 voliunlem2 25600 voliunlem3 25601 ioombl1lem2 25608 uniioovol 25628 uniiccvol 25629 uniioombllem1 25630 uniioombllem3 25634 itg2cl 25782 itg2seq 25792 itg2monolem2 25801 itg2monolem3 25802 itg2mono 25803 mdeglt 26119 mdegxrcl 26121 radcnvcl 26475 nmoxr 30795 nmopxr 31895 nmfnxr 31908 xrofsup 32778 supxrnemnf 32779 xrge0tsmsd 33048 mblfinlem3 37646 mblfinlem4 37647 ismblfin 37648 itg2addnclem 37658 itg2gt0cn 37662 binomcxplemdvbinom 44349 binomcxplemcvg 44350 binomcxplemnotnn0 44352 supxrcld 45047 supxrgere 45283 supxrgelem 45287 supxrge 45288 suplesup 45289 suplesup2 45326 supxrcli 45384 liminfval2 45724 liminflelimsuplem 45731 sge0cl 46337 sge0xaddlem1 46389 sge0xaddlem2 46390 sge0reuz 46403 |
Copyright terms: Public domain | W3C validator |