Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supxrcl | Structured version Visualization version GIF version |
Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005.) |
Ref | Expression |
---|---|
supxrcl | ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 12804 | . . 3 ⊢ < Or ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ⊆ ℝ* → < Or ℝ*) |
3 | xrsupss 12972 | . 2 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
4 | 2, 3 | supcl 9147 | 1 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 Or wor 5493 supcsup 9129 ℝ*cxr 10939 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 |
This theorem is referenced by: supxrun 12979 supxrmnf 12980 supxrbnd1 12984 supxrbnd2 12985 supxrub 12987 supxrleub 12989 supxrre 12990 supxrbnd 12991 supxrgtmnf 12992 supxrre1 12993 supxrre2 12994 supxrss 12995 ixxub 13029 limsupgord 15109 limsupcl 15110 limsupgf 15112 prdsdsf 23428 xpsdsval 23442 xrge0tsms 23903 elovolm 24544 ovolmge0 24546 ovolgelb 24549 ovollb2lem 24557 ovolunlem1a 24565 ovoliunlem1 24571 ovoliunlem2 24572 ovoliun 24574 ovolscalem1 24582 ovolicc1 24585 ovolicc2lem4 24589 voliunlem2 24620 voliunlem3 24621 ioombl1lem2 24628 uniioovol 24648 uniiccvol 24649 uniioombllem1 24650 uniioombllem3 24654 itg2cl 24802 itg2seq 24812 itg2monolem2 24821 itg2monolem3 24822 itg2mono 24823 mdeglt 25135 mdegxrcl 25137 radcnvcl 25481 nmoxr 29029 nmopxr 30129 nmfnxr 30142 xrofsup 30992 supxrnemnf 30993 xrge0tsmsd 31219 mblfinlem3 35743 mblfinlem4 35744 ismblfin 35745 itg2addnclem 35755 itg2gt0cn 35759 binomcxplemdvbinom 41860 binomcxplemcvg 41861 binomcxplemnotnn0 41863 supxrcld 42546 supxrgere 42762 supxrgelem 42766 supxrge 42767 suplesup 42768 suplesup2 42805 supxrcli 42864 liminfval2 43199 liminflelimsuplem 43206 sge0cl 43809 sge0xaddlem1 43861 sge0xaddlem2 43862 sge0reuz 43875 |
Copyright terms: Public domain | W3C validator |