MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrcl Structured version   Visualization version   GIF version

Theorem supxrcl 13241
Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005.)
Assertion
Ref Expression
supxrcl (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)

Proof of Theorem supxrcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 13067 . . 3 < Or ℝ*
21a1i 11 . 2 (𝐴 ⊆ ℝ* → < Or ℝ*)
3 xrsupss 13235 . 2 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
42, 3supcl 9401 1 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wss 3915   Or wor 5549  supcsup 9383  *cxr 11195   < clt 11196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-po 5550  df-so 5551  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-sup 9385  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395
This theorem is referenced by:  supxrun  13242  supxrmnf  13243  supxrbnd1  13247  supxrbnd2  13248  supxrub  13250  supxrleub  13252  supxrre  13253  supxrbnd  13254  supxrgtmnf  13255  supxrre1  13256  supxrre2  13257  supxrss  13258  ixxub  13292  limsupgord  15361  limsupcl  15362  limsupgf  15364  prdsdsf  23736  xpsdsval  23750  xrge0tsms  24213  elovolm  24855  ovolmge0  24857  ovolgelb  24860  ovollb2lem  24868  ovolunlem1a  24876  ovoliunlem1  24882  ovoliunlem2  24883  ovoliun  24885  ovolscalem1  24893  ovolicc1  24896  ovolicc2lem4  24900  voliunlem2  24931  voliunlem3  24932  ioombl1lem2  24939  uniioovol  24959  uniiccvol  24960  uniioombllem1  24961  uniioombllem3  24965  itg2cl  25113  itg2seq  25123  itg2monolem2  25132  itg2monolem3  25133  itg2mono  25134  mdeglt  25446  mdegxrcl  25448  radcnvcl  25792  nmoxr  29750  nmopxr  30850  nmfnxr  30863  xrofsup  31714  supxrnemnf  31715  xrge0tsmsd  31941  mblfinlem3  36146  mblfinlem4  36147  ismblfin  36148  itg2addnclem  36158  itg2gt0cn  36162  binomcxplemdvbinom  42707  binomcxplemcvg  42708  binomcxplemnotnn0  42710  supxrcld  43391  supxrgere  43641  supxrgelem  43645  supxrge  43646  suplesup  43647  suplesup2  43684  supxrcli  43743  liminfval2  44083  liminflelimsuplem  44090  sge0cl  44696  sge0xaddlem1  44748  sge0xaddlem2  44749  sge0reuz  44762
  Copyright terms: Public domain W3C validator