| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supxrcl | Structured version Visualization version GIF version | ||
| Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005.) |
| Ref | Expression |
|---|---|
| supxrcl | ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso 13044 | . . 3 ⊢ < Or ℝ* | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ⊆ ℝ* → < Or ℝ*) |
| 3 | xrsupss 13212 | . 2 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
| 4 | 2, 3 | supcl 9351 | 1 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ⊆ wss 3898 Or wor 5528 supcsup 9333 ℝ*cxr 11154 < clt 11155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-sup 9335 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 |
| This theorem is referenced by: supxrun 13219 supxrmnf 13220 supxrbnd1 13224 supxrbnd2 13225 supxrub 13227 supxrleub 13229 supxrre 13230 supxrbnd 13231 supxrgtmnf 13232 supxrre1 13233 supxrre2 13234 supxrss 13235 ixxub 13270 limsupgord 15383 limsupcl 15384 limsupgf 15386 prdsdsf 24285 xpsdsval 24299 xrge0tsms 24753 elovolm 25406 ovolmge0 25408 ovolgelb 25411 ovollb2lem 25419 ovolunlem1a 25427 ovoliunlem1 25433 ovoliunlem2 25434 ovoliun 25436 ovolscalem1 25444 ovolicc1 25447 ovolicc2lem4 25451 voliunlem2 25482 voliunlem3 25483 ioombl1lem2 25490 uniioovol 25510 uniiccvol 25511 uniioombllem1 25512 uniioombllem3 25516 itg2cl 25663 itg2seq 25673 itg2monolem2 25682 itg2monolem3 25683 itg2mono 25684 mdeglt 26000 mdegxrcl 26002 radcnvcl 26356 nmoxr 30750 nmopxr 31850 nmfnxr 31863 xrofsup 32756 supxrnemnf 32757 xrge0tsmsd 33051 mblfinlem3 37722 mblfinlem4 37723 ismblfin 37724 itg2addnclem 37734 itg2gt0cn 37738 binomcxplemdvbinom 44473 binomcxplemcvg 44474 binomcxplemnotnn0 44476 supxrcld 45231 supxrgere 45459 supxrgelem 45463 supxrge 45464 suplesup 45465 suplesup2 45501 supxrcli 45559 liminfval2 45893 sge0cl 46506 sge0xaddlem1 46558 sge0xaddlem2 46559 sge0reuz 46572 |
| Copyright terms: Public domain | W3C validator |