Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
⊆ wss 3949 Or wor 5588
supcsup 9435 ℝ*cxr 11247 <
clt 11248 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 |
This theorem is referenced by: supxrun
13295 supxrmnf
13296 supxrbnd1
13300 supxrbnd2
13301 supxrub
13303 supxrleub
13305 supxrre
13306 supxrbnd
13307 supxrgtmnf
13308 supxrre1
13309 supxrre2
13310 supxrss
13311 ixxub
13345 limsupgord
15416 limsupcl
15417 limsupgf
15419 prdsdsf
23873 xpsdsval
23887 xrge0tsms
24350 elovolm
24992 ovolmge0
24994 ovolgelb
24997 ovollb2lem
25005 ovolunlem1a
25013 ovoliunlem1
25019 ovoliunlem2
25020 ovoliun
25022 ovolscalem1
25030 ovolicc1
25033 ovolicc2lem4
25037 voliunlem2
25068 voliunlem3
25069 ioombl1lem2
25076 uniioovol
25096 uniiccvol
25097 uniioombllem1
25098 uniioombllem3
25102 itg2cl
25250 itg2seq
25260 itg2monolem2
25269 itg2monolem3
25270 itg2mono
25271 mdeglt
25583 mdegxrcl
25585 radcnvcl
25929 nmoxr
30019 nmopxr
31119 nmfnxr
31132 xrofsup
31980 supxrnemnf
31981 xrge0tsmsd
32209 mblfinlem3
36527 mblfinlem4
36528 ismblfin
36529 itg2addnclem
36539 itg2gt0cn
36543 binomcxplemdvbinom
43112 binomcxplemcvg
43113 binomcxplemnotnn0
43115 supxrcld
43796 supxrgere
44043 supxrgelem
44047 supxrge
44048 suplesup
44049 suplesup2
44086 supxrcli
44144 liminfval2
44484 liminflelimsuplem
44491 sge0cl
45097 sge0xaddlem1
45149 sge0xaddlem2
45150 sge0reuz
45163 |