| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supxrcl | Structured version Visualization version GIF version | ||
| Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005.) |
| Ref | Expression |
|---|---|
| supxrcl | ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso 13040 | . . 3 ⊢ < Or ℝ* | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ⊆ ℝ* → < Or ℝ*) |
| 3 | xrsupss 13208 | . 2 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
| 4 | 2, 3 | supcl 9342 | 1 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3902 Or wor 5523 supcsup 9324 ℝ*cxr 11145 < clt 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 |
| This theorem is referenced by: supxrun 13215 supxrmnf 13216 supxrbnd1 13220 supxrbnd2 13221 supxrub 13223 supxrleub 13225 supxrre 13226 supxrbnd 13227 supxrgtmnf 13228 supxrre1 13229 supxrre2 13230 supxrss 13231 ixxub 13266 limsupgord 15379 limsupcl 15380 limsupgf 15382 prdsdsf 24283 xpsdsval 24297 xrge0tsms 24751 elovolm 25404 ovolmge0 25406 ovolgelb 25409 ovollb2lem 25417 ovolunlem1a 25425 ovoliunlem1 25431 ovoliunlem2 25432 ovoliun 25434 ovolscalem1 25442 ovolicc1 25445 ovolicc2lem4 25449 voliunlem2 25480 voliunlem3 25481 ioombl1lem2 25488 uniioovol 25508 uniiccvol 25509 uniioombllem1 25510 uniioombllem3 25514 itg2cl 25661 itg2seq 25671 itg2monolem2 25680 itg2monolem3 25681 itg2mono 25682 mdeglt 25998 mdegxrcl 26000 radcnvcl 26354 nmoxr 30744 nmopxr 31844 nmfnxr 31857 xrofsup 32748 supxrnemnf 32749 xrge0tsmsd 33040 mblfinlem3 37705 mblfinlem4 37706 ismblfin 37707 itg2addnclem 37717 itg2gt0cn 37721 binomcxplemdvbinom 44392 binomcxplemcvg 44393 binomcxplemnotnn0 44395 supxrcld 45150 supxrgere 45378 supxrgelem 45382 supxrge 45383 suplesup 45384 suplesup2 45420 supxrcli 45478 liminfval2 45812 sge0cl 46425 sge0xaddlem1 46477 sge0xaddlem2 46478 sge0reuz 46491 |
| Copyright terms: Public domain | W3C validator |