| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dgrcl | Structured version Visualization version GIF version | ||
| Description: The degree of any polynomial is a nonnegative integer. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| dgrcl | ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
| 2 | 1 | dgrval 26163 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡(coeff‘𝐹) “ (ℂ ∖ {0})), ℕ0, < )) |
| 3 | nn0ssre 12394 | . . . . 5 ⊢ ℕ0 ⊆ ℝ | |
| 4 | ltso 11202 | . . . . 5 ⊢ < Or ℝ | |
| 5 | soss 5549 | . . . . 5 ⊢ (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0)) | |
| 6 | 3, 4, 5 | mp2 9 | . . . 4 ⊢ < Or ℕ0 |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → < Or ℕ0) |
| 8 | 0zd 12489 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ) | |
| 9 | cnvimass 6037 | . . . . 5 ⊢ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ dom (coeff‘𝐹) | |
| 10 | 1 | coef 26165 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0})) |
| 11 | 9, 10 | fssdm 6677 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ ℕ0) |
| 12 | 1 | dgrlem 26164 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 ≤ 𝑛)) |
| 13 | 12 | simprd 495 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) |
| 14 | nn0uz 12778 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 15 | 14 | uzsupss 12842 | . . . 4 ⊢ ((0 ∈ ℤ ∧ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
| 16 | 8, 11, 13, 15 | syl3anc 1373 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
| 17 | 7, 16 | supcl 9351 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → sup((◡(coeff‘𝐹) “ (ℂ ∖ {0})), ℕ0, < ) ∈ ℕ0) |
| 18 | 2, 17 | eqeltrd 2833 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ∖ cdif 3895 ∪ cun 3896 ⊆ wss 3898 {csn 4577 class class class wbr 5095 Or wor 5528 ◡ccnv 5620 “ cima 5624 ⟶wf 6484 ‘cfv 6488 supcsup 9333 ℂcc 11013 ℝcr 11014 0cc0 11015 < clt 11155 ≤ cle 11156 ℕ0cn0 12390 ℤcz 12477 Polycply 26119 coeffccoe 26121 degcdgr 26122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-fz 13412 df-fzo 13559 df-fl 13700 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-rlim 15400 df-sum 15598 df-0p 25601 df-ply 26123 df-coe 26125 df-dgr 26126 |
| This theorem is referenced by: dgrub 26169 dgrub2 26170 dgrlb 26171 coeidlem 26172 plyco 26176 dgreq 26179 0dgr 26180 dgrnznn 26182 coefv0 26183 coeaddlem 26184 coemullem 26185 coemulhi 26189 dgreq0 26201 dgrlt 26202 dgradd2 26204 dgrmul 26206 dgrmulc 26207 dgrcolem2 26210 dgrco 26211 plycj 26213 coecj 26214 plycjOLD 26215 coecjOLD 26216 plymul0or 26218 dvply2g 26222 dvply2gOLD 26223 plydivlem3 26233 plydivlem4 26234 plydivex 26235 plydiveu 26236 plyrem 26243 fta1lem 26245 fta1 26246 quotcan 26247 vieta1lem1 26248 vieta1lem2 26249 elqaalem2 26258 elqaalem3 26259 aareccl 26264 aannenlem1 26266 aannenlem2 26267 aalioulem1 26270 aaliou2 26278 taylply2 26305 taylply2OLD 26306 signsplypnf 34586 signsply0 34587 dgraa0p 43269 mpaaeu 43270 elaa2lem 46358 etransclem46 46405 etransclem47 46406 etransclem48 46407 cjnpoly 47016 |
| Copyright terms: Public domain | W3C validator |