![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dgrcl | Structured version Visualization version GIF version |
Description: The degree of any polynomial is a nonnegative integer. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
dgrcl | ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . 3 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
2 | 1 | dgrval 26149 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡(coeff‘𝐹) “ (ℂ ∖ {0})), ℕ0, < )) |
3 | nn0ssre 12498 | . . . . 5 ⊢ ℕ0 ⊆ ℝ | |
4 | ltso 11316 | . . . . 5 ⊢ < Or ℝ | |
5 | soss 5604 | . . . . 5 ⊢ (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0)) | |
6 | 3, 4, 5 | mp2 9 | . . . 4 ⊢ < Or ℕ0 |
7 | 6 | a1i 11 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → < Or ℕ0) |
8 | 0zd 12592 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ) | |
9 | cnvimass 6079 | . . . . 5 ⊢ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ dom (coeff‘𝐹) | |
10 | 1 | coef 26151 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0})) |
11 | 9, 10 | fssdm 6736 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ ℕ0) |
12 | 1 | dgrlem 26150 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 ≤ 𝑛)) |
13 | 12 | simprd 495 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) |
14 | nn0uz 12886 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
15 | 14 | uzsupss 12946 | . . . 4 ⊢ ((0 ∈ ℤ ∧ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
16 | 8, 11, 13, 15 | syl3anc 1369 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
17 | 7, 16 | supcl 9473 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → sup((◡(coeff‘𝐹) “ (ℂ ∖ {0})), ℕ0, < ) ∈ ℕ0) |
18 | 2, 17 | eqeltrd 2828 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2099 ∀wral 3056 ∃wrex 3065 ∖ cdif 3941 ∪ cun 3942 ⊆ wss 3944 {csn 4624 class class class wbr 5142 Or wor 5583 ◡ccnv 5671 “ cima 5675 ⟶wf 6538 ‘cfv 6542 supcsup 9455 ℂcc 11128 ℝcr 11129 0cc0 11130 < clt 11270 ≤ cle 11271 ℕ0cn0 12494 ℤcz 12580 Polycply 26105 coeffccoe 26107 degcdgr 26108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8838 df-pm 8839 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-inf 9458 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-n0 12495 df-z 12581 df-uz 12845 df-rp 12999 df-fz 13509 df-fzo 13652 df-fl 13781 df-seq 13991 df-exp 14051 df-hash 14314 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-clim 15456 df-rlim 15457 df-sum 15657 df-0p 25586 df-ply 26109 df-coe 26111 df-dgr 26112 |
This theorem is referenced by: dgrub 26155 dgrub2 26156 dgrlb 26157 coeidlem 26158 plyco 26162 dgreq 26165 0dgr 26166 dgrnznn 26168 coefv0 26169 coeaddlem 26170 coemullem 26171 coemulhi 26175 dgreq0 26187 dgrlt 26188 dgradd2 26190 dgrmul 26192 dgrmulc 26193 dgrcolem2 26196 dgrco 26197 plycj 26199 coecj 26200 plymul0or 26202 dvply2g 26206 dvply2gOLD 26207 plydivlem3 26217 plydivlem4 26218 plydivex 26219 plydiveu 26220 plyrem 26227 fta1lem 26229 fta1 26230 quotcan 26231 vieta1lem1 26232 vieta1lem2 26233 elqaalem2 26242 elqaalem3 26243 aareccl 26248 aannenlem1 26250 aannenlem2 26251 aalioulem1 26254 aaliou2 26262 taylply2 26289 taylply2OLD 26290 signsplypnf 34118 signsply0 34119 dgraa0p 42495 mpaaeu 42496 elaa2lem 45544 etransclem46 45591 etransclem47 45592 etransclem48 45593 |
Copyright terms: Public domain | W3C validator |