MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrcl Structured version   Visualization version   GIF version

Theorem dgrcl 25299
Description: The degree of any polynomial is a nonnegative integer. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
dgrcl (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)

Proof of Theorem dgrcl
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (coeff‘𝐹) = (coeff‘𝐹)
21dgrval 25294 . 2 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup(((coeff‘𝐹) “ (ℂ ∖ {0})), ℕ0, < ))
3 nn0ssre 12167 . . . . 5 0 ⊆ ℝ
4 ltso 10986 . . . . 5 < Or ℝ
5 soss 5514 . . . . 5 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
63, 4, 5mp2 9 . . . 4 < Or ℕ0
76a1i 11 . . 3 (𝐹 ∈ (Poly‘𝑆) → < Or ℕ0)
8 0zd 12261 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ)
9 cnvimass 5978 . . . . 5 ((coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ dom (coeff‘𝐹)
101coef 25296 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}))
119, 10fssdm 6604 . . . 4 (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ ℕ0)
121dgrlem 25295 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0}))𝑥𝑛))
1312simprd 495 . . . 4 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0}))𝑥𝑛)
14 nn0uz 12549 . . . . 5 0 = (ℤ‘0)
1514uzsupss 12609 . . . 4 ((0 ∈ ℤ ∧ ((coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0}))𝑥𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 < 𝑦)))
168, 11, 13, 15syl3anc 1369 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 < 𝑦)))
177, 16supcl 9147 . 2 (𝐹 ∈ (Poly‘𝑆) → sup(((coeff‘𝐹) “ (ℂ ∖ {0})), ℕ0, < ) ∈ ℕ0)
182, 17eqeltrd 2839 1 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wral 3063  wrex 3064  cdif 3880  cun 3881  wss 3883  {csn 4558   class class class wbr 5070   Or wor 5493  ccnv 5579  cima 5583  wf 6414  cfv 6418  supcsup 9129  cc 10800  cr 10801  0cc0 10802   < clt 10940  cle 10941  0cn0 12163  cz 12249  Polycply 25250  coeffccoe 25252  degcdgr 25253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-0p 24739  df-ply 25254  df-coe 25256  df-dgr 25257
This theorem is referenced by:  dgrub  25300  dgrub2  25301  dgrlb  25302  coeidlem  25303  plyco  25307  dgreq  25310  0dgr  25311  dgrnznn  25313  coefv0  25314  coeaddlem  25315  coemullem  25316  coemulhi  25320  dgreq0  25331  dgrlt  25332  dgradd2  25334  dgrmul  25336  dgrmulc  25337  dgrcolem2  25340  dgrco  25341  plycj  25343  coecj  25344  plymul0or  25346  dvply2g  25350  plydivlem3  25360  plydivlem4  25361  plydivex  25362  plydiveu  25363  plyrem  25370  fta1lem  25372  fta1  25373  quotcan  25374  vieta1lem1  25375  vieta1lem2  25376  elqaalem2  25385  elqaalem3  25386  aareccl  25391  aannenlem1  25393  aannenlem2  25394  aalioulem1  25397  aaliou2  25405  taylply2  25432  signsplypnf  32429  signsply0  32430  dgraa0p  40890  mpaaeu  40891  elaa2lem  43664  etransclem46  43711  etransclem47  43712  etransclem48  43713
  Copyright terms: Public domain W3C validator