![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dgrcl | Structured version Visualization version GIF version |
Description: The degree of any polynomial is a nonnegative integer. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
dgrcl | β’ (πΉ β (Polyβπ) β (degβπΉ) β β0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (coeffβπΉ) = (coeffβπΉ) | |
2 | 1 | dgrval 25966 | . 2 β’ (πΉ β (Polyβπ) β (degβπΉ) = sup((β‘(coeffβπΉ) β (β β {0})), β0, < )) |
3 | nn0ssre 12480 | . . . . 5 β’ β0 β β | |
4 | ltso 11298 | . . . . 5 β’ < Or β | |
5 | soss 5608 | . . . . 5 β’ (β0 β β β ( < Or β β < Or β0)) | |
6 | 3, 4, 5 | mp2 9 | . . . 4 β’ < Or β0 |
7 | 6 | a1i 11 | . . 3 β’ (πΉ β (Polyβπ) β < Or β0) |
8 | 0zd 12574 | . . . 4 β’ (πΉ β (Polyβπ) β 0 β β€) | |
9 | cnvimass 6080 | . . . . 5 β’ (β‘(coeffβπΉ) β (β β {0})) β dom (coeffβπΉ) | |
10 | 1 | coef 25968 | . . . . 5 β’ (πΉ β (Polyβπ) β (coeffβπΉ):β0βΆ(π βͺ {0})) |
11 | 9, 10 | fssdm 6737 | . . . 4 β’ (πΉ β (Polyβπ) β (β‘(coeffβπΉ) β (β β {0})) β β0) |
12 | 1 | dgrlem 25967 | . . . . 5 β’ (πΉ β (Polyβπ) β ((coeffβπΉ):β0βΆ(π βͺ {0}) β§ βπ β β€ βπ₯ β (β‘(coeffβπΉ) β (β β {0}))π₯ β€ π)) |
13 | 12 | simprd 496 | . . . 4 β’ (πΉ β (Polyβπ) β βπ β β€ βπ₯ β (β‘(coeffβπΉ) β (β β {0}))π₯ β€ π) |
14 | nn0uz 12868 | . . . . 5 β’ β0 = (β€β₯β0) | |
15 | 14 | uzsupss 12928 | . . . 4 β’ ((0 β β€ β§ (β‘(coeffβπΉ) β (β β {0})) β β0 β§ βπ β β€ βπ₯ β (β‘(coeffβπΉ) β (β β {0}))π₯ β€ π) β βπ β β0 (βπ₯ β (β‘(coeffβπΉ) β (β β {0})) Β¬ π < π₯ β§ βπ₯ β β0 (π₯ < π β βπ¦ β (β‘(coeffβπΉ) β (β β {0}))π₯ < π¦))) |
16 | 8, 11, 13, 15 | syl3anc 1371 | . . 3 β’ (πΉ β (Polyβπ) β βπ β β0 (βπ₯ β (β‘(coeffβπΉ) β (β β {0})) Β¬ π < π₯ β§ βπ₯ β β0 (π₯ < π β βπ¦ β (β‘(coeffβπΉ) β (β β {0}))π₯ < π¦))) |
17 | 7, 16 | supcl 9455 | . 2 β’ (πΉ β (Polyβπ) β sup((β‘(coeffβπΉ) β (β β {0})), β0, < ) β β0) |
18 | 2, 17 | eqeltrd 2833 | 1 β’ (πΉ β (Polyβπ) β (degβπΉ) β β0) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β wcel 2106 βwral 3061 βwrex 3070 β cdif 3945 βͺ cun 3946 β wss 3948 {csn 4628 class class class wbr 5148 Or wor 5587 β‘ccnv 5675 β cima 5679 βΆwf 6539 βcfv 6543 supcsup 9437 βcc 11110 βcr 11111 0cc0 11112 < clt 11252 β€ cle 11253 β0cn0 12476 β€cz 12562 Polycply 25922 coeffccoe 25924 degcdgr 25925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-fz 13489 df-fzo 13632 df-fl 13761 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-rlim 15437 df-sum 15637 df-0p 25411 df-ply 25926 df-coe 25928 df-dgr 25929 |
This theorem is referenced by: dgrub 25972 dgrub2 25973 dgrlb 25974 coeidlem 25975 plyco 25979 dgreq 25982 0dgr 25983 dgrnznn 25985 coefv0 25986 coeaddlem 25987 coemullem 25988 coemulhi 25992 dgreq0 26003 dgrlt 26004 dgradd2 26006 dgrmul 26008 dgrmulc 26009 dgrcolem2 26012 dgrco 26013 plycj 26015 coecj 26016 plymul0or 26018 dvply2g 26022 plydivlem3 26032 plydivlem4 26033 plydivex 26034 plydiveu 26035 plyrem 26042 fta1lem 26044 fta1 26045 quotcan 26046 vieta1lem1 26047 vieta1lem2 26048 elqaalem2 26057 elqaalem3 26058 aareccl 26063 aannenlem1 26065 aannenlem2 26066 aalioulem1 26069 aaliou2 26077 taylply2 26104 signsplypnf 33847 signsply0 33848 dgraa0p 42193 mpaaeu 42194 elaa2lem 45248 etransclem46 45295 etransclem47 45296 etransclem48 45297 |
Copyright terms: Public domain | W3C validator |