MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrcl Structured version   Visualization version   GIF version

Theorem dgrcl 26166
Description: The degree of any polynomial is a nonnegative integer. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
dgrcl (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)

Proof of Theorem dgrcl
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (coeff‘𝐹) = (coeff‘𝐹)
21dgrval 26161 . 2 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup(((coeff‘𝐹) “ (ℂ ∖ {0})), ℕ0, < ))
3 nn0ssre 12385 . . . . 5 0 ⊆ ℝ
4 ltso 11193 . . . . 5 < Or ℝ
5 soss 5544 . . . . 5 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
63, 4, 5mp2 9 . . . 4 < Or ℕ0
76a1i 11 . . 3 (𝐹 ∈ (Poly‘𝑆) → < Or ℕ0)
8 0zd 12480 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ)
9 cnvimass 6031 . . . . 5 ((coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ dom (coeff‘𝐹)
101coef 26163 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}))
119, 10fssdm 6670 . . . 4 (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ ℕ0)
121dgrlem 26162 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0}))𝑥𝑛))
1312simprd 495 . . . 4 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0}))𝑥𝑛)
14 nn0uz 12774 . . . . 5 0 = (ℤ‘0)
1514uzsupss 12838 . . . 4 ((0 ∈ ℤ ∧ ((coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0}))𝑥𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 < 𝑦)))
168, 11, 13, 15syl3anc 1373 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ ((coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 < 𝑦)))
177, 16supcl 9342 . 2 (𝐹 ∈ (Poly‘𝑆) → sup(((coeff‘𝐹) “ (ℂ ∖ {0})), ℕ0, < ) ∈ ℕ0)
182, 17eqeltrd 2831 1 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2111  wral 3047  wrex 3056  cdif 3899  cun 3900  wss 3902  {csn 4576   class class class wbr 5091   Or wor 5523  ccnv 5615  cima 5619  wf 6477  cfv 6481  supcsup 9324  cc 11004  cr 11005  0cc0 11006   < clt 11146  cle 11147  0cn0 12381  cz 12468  Polycply 26117  coeffccoe 26119  degcdgr 26120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-0p 25599  df-ply 26121  df-coe 26123  df-dgr 26124
This theorem is referenced by:  dgrub  26167  dgrub2  26168  dgrlb  26169  coeidlem  26170  plyco  26174  dgreq  26177  0dgr  26178  dgrnznn  26180  coefv0  26181  coeaddlem  26182  coemullem  26183  coemulhi  26187  dgreq0  26199  dgrlt  26200  dgradd2  26202  dgrmul  26204  dgrmulc  26205  dgrcolem2  26208  dgrco  26209  plycj  26211  coecj  26212  plycjOLD  26213  coecjOLD  26214  plymul0or  26216  dvply2g  26220  dvply2gOLD  26221  plydivlem3  26231  plydivlem4  26232  plydivex  26233  plydiveu  26234  plyrem  26241  fta1lem  26243  fta1  26244  quotcan  26245  vieta1lem1  26246  vieta1lem2  26247  elqaalem2  26256  elqaalem3  26257  aareccl  26262  aannenlem1  26264  aannenlem2  26265  aalioulem1  26268  aaliou2  26276  taylply2  26303  taylply2OLD  26304  signsplypnf  34561  signsply0  34562  dgraa0p  43188  mpaaeu  43189  elaa2lem  46277  etransclem46  46324  etransclem47  46325  etransclem48  46326  cjnpoly  46926
  Copyright terms: Public domain W3C validator