| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dgrcl | Structured version Visualization version GIF version | ||
| Description: The degree of any polynomial is a nonnegative integer. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| dgrcl | ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
| 2 | 1 | dgrval 26161 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡(coeff‘𝐹) “ (ℂ ∖ {0})), ℕ0, < )) |
| 3 | nn0ssre 12385 | . . . . 5 ⊢ ℕ0 ⊆ ℝ | |
| 4 | ltso 11193 | . . . . 5 ⊢ < Or ℝ | |
| 5 | soss 5544 | . . . . 5 ⊢ (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0)) | |
| 6 | 3, 4, 5 | mp2 9 | . . . 4 ⊢ < Or ℕ0 |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → < Or ℕ0) |
| 8 | 0zd 12480 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ) | |
| 9 | cnvimass 6031 | . . . . 5 ⊢ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ dom (coeff‘𝐹) | |
| 10 | 1 | coef 26163 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0})) |
| 11 | 9, 10 | fssdm 6670 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ ℕ0) |
| 12 | 1 | dgrlem 26162 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 ≤ 𝑛)) |
| 13 | 12 | simprd 495 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) |
| 14 | nn0uz 12774 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 15 | 14 | uzsupss 12838 | . . . 4 ⊢ ((0 ∈ ℤ ∧ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
| 16 | 8, 11, 13, 15 | syl3anc 1373 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
| 17 | 7, 16 | supcl 9342 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → sup((◡(coeff‘𝐹) “ (ℂ ∖ {0})), ℕ0, < ) ∈ ℕ0) |
| 18 | 2, 17 | eqeltrd 2831 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∖ cdif 3899 ∪ cun 3900 ⊆ wss 3902 {csn 4576 class class class wbr 5091 Or wor 5523 ◡ccnv 5615 “ cima 5619 ⟶wf 6477 ‘cfv 6481 supcsup 9324 ℂcc 11004 ℝcr 11005 0cc0 11006 < clt 11146 ≤ cle 11147 ℕ0cn0 12381 ℤcz 12468 Polycply 26117 coeffccoe 26119 degcdgr 26120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-0p 25599 df-ply 26121 df-coe 26123 df-dgr 26124 |
| This theorem is referenced by: dgrub 26167 dgrub2 26168 dgrlb 26169 coeidlem 26170 plyco 26174 dgreq 26177 0dgr 26178 dgrnznn 26180 coefv0 26181 coeaddlem 26182 coemullem 26183 coemulhi 26187 dgreq0 26199 dgrlt 26200 dgradd2 26202 dgrmul 26204 dgrmulc 26205 dgrcolem2 26208 dgrco 26209 plycj 26211 coecj 26212 plycjOLD 26213 coecjOLD 26214 plymul0or 26216 dvply2g 26220 dvply2gOLD 26221 plydivlem3 26231 plydivlem4 26232 plydivex 26233 plydiveu 26234 plyrem 26241 fta1lem 26243 fta1 26244 quotcan 26245 vieta1lem1 26246 vieta1lem2 26247 elqaalem2 26256 elqaalem3 26257 aareccl 26262 aannenlem1 26264 aannenlem2 26265 aalioulem1 26268 aaliou2 26276 taylply2 26303 taylply2OLD 26304 signsplypnf 34561 signsply0 34562 dgraa0p 43188 mpaaeu 43189 elaa2lem 46277 etransclem46 46324 etransclem47 46325 etransclem48 46326 cjnpoly 46926 |
| Copyright terms: Public domain | W3C validator |