| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dgrcl | Structured version Visualization version GIF version | ||
| Description: The degree of any polynomial is a nonnegative integer. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| dgrcl | ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
| 2 | 1 | dgrval 26133 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡(coeff‘𝐹) “ (ℂ ∖ {0})), ℕ0, < )) |
| 3 | nn0ssre 12446 | . . . . 5 ⊢ ℕ0 ⊆ ℝ | |
| 4 | ltso 11254 | . . . . 5 ⊢ < Or ℝ | |
| 5 | soss 5566 | . . . . 5 ⊢ (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0)) | |
| 6 | 3, 4, 5 | mp2 9 | . . . 4 ⊢ < Or ℕ0 |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → < Or ℕ0) |
| 8 | 0zd 12541 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ) | |
| 9 | cnvimass 6053 | . . . . 5 ⊢ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ dom (coeff‘𝐹) | |
| 10 | 1 | coef 26135 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0})) |
| 11 | 9, 10 | fssdm 6707 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ ℕ0) |
| 12 | 1 | dgrlem 26134 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 ≤ 𝑛)) |
| 13 | 12 | simprd 495 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) |
| 14 | nn0uz 12835 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 15 | 14 | uzsupss 12899 | . . . 4 ⊢ ((0 ∈ ℤ ∧ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
| 16 | 8, 11, 13, 15 | syl3anc 1373 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
| 17 | 7, 16 | supcl 9409 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → sup((◡(coeff‘𝐹) “ (ℂ ∖ {0})), ℕ0, < ) ∈ ℕ0) |
| 18 | 2, 17 | eqeltrd 2828 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∖ cdif 3911 ∪ cun 3912 ⊆ wss 3914 {csn 4589 class class class wbr 5107 Or wor 5545 ◡ccnv 5637 “ cima 5641 ⟶wf 6507 ‘cfv 6511 supcsup 9391 ℂcc 11066 ℝcr 11067 0cc0 11068 < clt 11208 ≤ cle 11209 ℕ0cn0 12442 ℤcz 12529 Polycply 26089 coeffccoe 26091 degcdgr 26092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-0p 25571 df-ply 26093 df-coe 26095 df-dgr 26096 |
| This theorem is referenced by: dgrub 26139 dgrub2 26140 dgrlb 26141 coeidlem 26142 plyco 26146 dgreq 26149 0dgr 26150 dgrnznn 26152 coefv0 26153 coeaddlem 26154 coemullem 26155 coemulhi 26159 dgreq0 26171 dgrlt 26172 dgradd2 26174 dgrmul 26176 dgrmulc 26177 dgrcolem2 26180 dgrco 26181 plycj 26183 coecj 26184 plycjOLD 26185 coecjOLD 26186 plymul0or 26188 dvply2g 26192 dvply2gOLD 26193 plydivlem3 26203 plydivlem4 26204 plydivex 26205 plydiveu 26206 plyrem 26213 fta1lem 26215 fta1 26216 quotcan 26217 vieta1lem1 26218 vieta1lem2 26219 elqaalem2 26228 elqaalem3 26229 aareccl 26234 aannenlem1 26236 aannenlem2 26237 aalioulem1 26240 aaliou2 26248 taylply2 26275 taylply2OLD 26276 signsplypnf 34541 signsply0 34542 dgraa0p 43138 mpaaeu 43139 elaa2lem 46231 etransclem46 46278 etransclem47 46279 etransclem48 46280 cjnpoly 46890 |
| Copyright terms: Public domain | W3C validator |