| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dgrcl | Structured version Visualization version GIF version | ||
| Description: The degree of any polynomial is a nonnegative integer. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| dgrcl | ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
| 2 | 1 | dgrval 26185 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡(coeff‘𝐹) “ (ℂ ∖ {0})), ℕ0, < )) |
| 3 | nn0ssre 12505 | . . . . 5 ⊢ ℕ0 ⊆ ℝ | |
| 4 | ltso 11315 | . . . . 5 ⊢ < Or ℝ | |
| 5 | soss 5581 | . . . . 5 ⊢ (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0)) | |
| 6 | 3, 4, 5 | mp2 9 | . . . 4 ⊢ < Or ℕ0 |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → < Or ℕ0) |
| 8 | 0zd 12600 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℤ) | |
| 9 | cnvimass 6069 | . . . . 5 ⊢ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ dom (coeff‘𝐹) | |
| 10 | 1 | coef 26187 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0})) |
| 11 | 9, 10 | fssdm 6725 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ ℕ0) |
| 12 | 1 | dgrlem 26186 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 ≤ 𝑛)) |
| 13 | 12 | simprd 495 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) |
| 14 | nn0uz 12894 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 15 | 14 | uzsupss 12956 | . . . 4 ⊢ ((0 ∈ ℤ ∧ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ⊆ ℕ0 ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 ≤ 𝑛) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
| 16 | 8, 11, 13, 15 | syl3anc 1373 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 (∀𝑥 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0})) ¬ 𝑛 < 𝑥 ∧ ∀𝑥 ∈ ℕ0 (𝑥 < 𝑛 → ∃𝑦 ∈ (◡(coeff‘𝐹) “ (ℂ ∖ {0}))𝑥 < 𝑦))) |
| 17 | 7, 16 | supcl 9470 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → sup((◡(coeff‘𝐹) “ (ℂ ∖ {0})), ℕ0, < ) ∈ ℕ0) |
| 18 | 2, 17 | eqeltrd 2834 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ∖ cdif 3923 ∪ cun 3924 ⊆ wss 3926 {csn 4601 class class class wbr 5119 Or wor 5560 ◡ccnv 5653 “ cima 5657 ⟶wf 6527 ‘cfv 6531 supcsup 9452 ℂcc 11127 ℝcr 11128 0cc0 11129 < clt 11269 ≤ cle 11270 ℕ0cn0 12501 ℤcz 12588 Polycply 26141 coeffccoe 26143 degcdgr 26144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-rlim 15505 df-sum 15703 df-0p 25623 df-ply 26145 df-coe 26147 df-dgr 26148 |
| This theorem is referenced by: dgrub 26191 dgrub2 26192 dgrlb 26193 coeidlem 26194 plyco 26198 dgreq 26201 0dgr 26202 dgrnznn 26204 coefv0 26205 coeaddlem 26206 coemullem 26207 coemulhi 26211 dgreq0 26223 dgrlt 26224 dgradd2 26226 dgrmul 26228 dgrmulc 26229 dgrcolem2 26232 dgrco 26233 plycj 26235 coecj 26236 plycjOLD 26237 coecjOLD 26238 plymul0or 26240 dvply2g 26244 dvply2gOLD 26245 plydivlem3 26255 plydivlem4 26256 plydivex 26257 plydiveu 26258 plyrem 26265 fta1lem 26267 fta1 26268 quotcan 26269 vieta1lem1 26270 vieta1lem2 26271 elqaalem2 26280 elqaalem3 26281 aareccl 26286 aannenlem1 26288 aannenlem2 26289 aalioulem1 26292 aaliou2 26300 taylply2 26327 taylply2OLD 26328 signsplypnf 34582 signsply0 34583 dgraa0p 43173 mpaaeu 43174 elaa2lem 46262 etransclem46 46309 etransclem47 46310 etransclem48 46311 |
| Copyright terms: Public domain | W3C validator |