Proof of Theorem suppssOLD
Step | Hyp | Ref
| Expression |
1 | | suppss.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
2 | 1 | ffnd 6504 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | 2 | adantl 485 |
. . . . . 6
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐹 Fn 𝐴) |
4 | | fdm 6511 |
. . . . . . . 8
⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
5 | | dmexg 7619 |
. . . . . . . . . 10
⊢ (𝐹 ∈ V → dom 𝐹 ∈ V) |
6 | 5 | adantr 484 |
. . . . . . . . 9
⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → dom 𝐹 ∈ V) |
7 | | eleq1 2839 |
. . . . . . . . . 10
⊢ (𝐴 = dom 𝐹 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V)) |
8 | 7 | eqcoms 2766 |
. . . . . . . . 9
⊢ (dom
𝐹 = 𝐴 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V)) |
9 | 6, 8 | syl5ibr 249 |
. . . . . . . 8
⊢ (dom
𝐹 = 𝐴 → ((𝐹 ∈ V ∧ 𝑍 ∈ V) → 𝐴 ∈ V)) |
10 | 1, 4, 9 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ∈ V ∧ 𝑍 ∈ V) → 𝐴 ∈ V)) |
11 | 10 | impcom 411 |
. . . . . 6
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐴 ∈ V) |
12 | | simplr 768 |
. . . . . 6
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V) |
13 | | elsuppfn 7851 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ V ∧ 𝑍 ∈ V) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) |
14 | 3, 11, 12, 13 | syl3anc 1368 |
. . . . 5
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) |
15 | | eldif 3870 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝐴 ∖ 𝑊) ↔ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊)) |
16 | | suppss.n |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) |
17 | 16 | adantll 713 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) |
18 | 15, 17 | sylan2br 597 |
. . . . . . . 8
⊢ ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊)) → (𝐹‘𝑘) = 𝑍) |
19 | 18 | expr 460 |
. . . . . . 7
⊢ ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → (¬ 𝑘 ∈ 𝑊 → (𝐹‘𝑘) = 𝑍)) |
20 | 19 | necon1ad 2968 |
. . . . . 6
⊢ ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘) ≠ 𝑍 → 𝑘 ∈ 𝑊)) |
21 | 20 | expimpd 457 |
. . . . 5
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) → 𝑘 ∈ 𝑊)) |
22 | 14, 21 | sylbid 243 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) → 𝑘 ∈ 𝑊)) |
23 | 22 | ssrdv 3900 |
. . 3
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) ⊆ 𝑊) |
24 | 23 | ex 416 |
. 2
⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)) |
25 | | supp0prc 7844 |
. . . 4
⊢ (¬
(𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) |
26 | | 0ss 4295 |
. . . 4
⊢ ∅
⊆ 𝑊 |
27 | 25, 26 | eqsstrdi 3948 |
. . 3
⊢ (¬
(𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ 𝑊) |
28 | 27 | a1d 25 |
. 2
⊢ (¬
(𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)) |
29 | 24, 28 | pm2.61i 185 |
1
⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |