Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssOLD Structured version   Visualization version   GIF version

Theorem suppssOLD 7875
 Description: Obsolete version of suppss 7874 as of 5-Aug-2024. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
suppss.f (𝜑𝐹:𝐴𝐵)
suppss.n ((𝜑𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
Assertion
Ref Expression
suppssOLD (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem suppssOLD
StepHypRef Expression
1 suppss.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
21ffnd 6504 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
32adantl 485 . . . . . 6 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐹 Fn 𝐴)
4 fdm 6511 . . . . . . . 8 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5 dmexg 7619 . . . . . . . . . 10 (𝐹 ∈ V → dom 𝐹 ∈ V)
65adantr 484 . . . . . . . . 9 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → dom 𝐹 ∈ V)
7 eleq1 2839 . . . . . . . . . 10 (𝐴 = dom 𝐹 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V))
87eqcoms 2766 . . . . . . . . 9 (dom 𝐹 = 𝐴 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V))
96, 8syl5ibr 249 . . . . . . . 8 (dom 𝐹 = 𝐴 → ((𝐹 ∈ V ∧ 𝑍 ∈ V) → 𝐴 ∈ V))
101, 4, 93syl 18 . . . . . . 7 (𝜑 → ((𝐹 ∈ V ∧ 𝑍 ∈ V) → 𝐴 ∈ V))
1110impcom 411 . . . . . 6 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐴 ∈ V)
12 simplr 768 . . . . . 6 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V)
13 elsuppfn 7851 . . . . . 6 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 𝑍 ∈ V) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
143, 11, 12, 13syl3anc 1368 . . . . 5 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
15 eldif 3870 . . . . . . . . 9 (𝑘 ∈ (𝐴𝑊) ↔ (𝑘𝐴 ∧ ¬ 𝑘𝑊))
16 suppss.n . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
1716adantll 713 . . . . . . . . 9 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
1815, 17sylan2br 597 . . . . . . . 8 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ (𝑘𝐴 ∧ ¬ 𝑘𝑊)) → (𝐹𝑘) = 𝑍)
1918expr 460 . . . . . . 7 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘𝐴) → (¬ 𝑘𝑊 → (𝐹𝑘) = 𝑍))
2019necon1ad 2968 . . . . . 6 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘𝐴) → ((𝐹𝑘) ≠ 𝑍𝑘𝑊))
2120expimpd 457 . . . . 5 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) → 𝑘𝑊))
2214, 21sylbid 243 . . . 4 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) → 𝑘𝑊))
2322ssrdv 3900 . . 3 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) ⊆ 𝑊)
2423ex 416 . 2 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊))
25 supp0prc 7844 . . . 4 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅)
26 0ss 4295 . . . 4 ∅ ⊆ 𝑊
2725, 26eqsstrdi 3948 . . 3 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ 𝑊)
2827a1d 25 . 2 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊))
2924, 28pm2.61i 185 1 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  Vcvv 3409   ∖ cdif 3857   ⊆ wss 3860  ∅c0 4227  dom cdm 5528   Fn wfn 6335  ⟶wf 6336  ‘cfv 6340  (class class class)co 7156   supp csupp 7841 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pr 5302  ax-un 7465 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-supp 7842 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator