MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssOLD Structured version   Visualization version   GIF version

Theorem suppssOLD 8179
Description: Obsolete version of suppss 8178 as of 5-Aug-2024. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
suppss.f (𝜑𝐹:𝐴𝐵)
suppss.n ((𝜑𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
Assertion
Ref Expression
suppssOLD (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem suppssOLD
StepHypRef Expression
1 suppss.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
21ffnd 6718 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
32adantl 482 . . . . . 6 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐹 Fn 𝐴)
4 fdm 6726 . . . . . . . 8 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5 dmexg 7893 . . . . . . . . . 10 (𝐹 ∈ V → dom 𝐹 ∈ V)
65adantr 481 . . . . . . . . 9 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → dom 𝐹 ∈ V)
7 eleq1 2821 . . . . . . . . . 10 (𝐴 = dom 𝐹 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V))
87eqcoms 2740 . . . . . . . . 9 (dom 𝐹 = 𝐴 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V))
96, 8imbitrrid 245 . . . . . . . 8 (dom 𝐹 = 𝐴 → ((𝐹 ∈ V ∧ 𝑍 ∈ V) → 𝐴 ∈ V))
101, 4, 93syl 18 . . . . . . 7 (𝜑 → ((𝐹 ∈ V ∧ 𝑍 ∈ V) → 𝐴 ∈ V))
1110impcom 408 . . . . . 6 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐴 ∈ V)
12 simplr 767 . . . . . 6 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V)
13 elsuppfn 8155 . . . . . 6 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 𝑍 ∈ V) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
143, 11, 12, 13syl3anc 1371 . . . . 5 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
15 eldif 3958 . . . . . . . . 9 (𝑘 ∈ (𝐴𝑊) ↔ (𝑘𝐴 ∧ ¬ 𝑘𝑊))
16 suppss.n . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
1716adantll 712 . . . . . . . . 9 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
1815, 17sylan2br 595 . . . . . . . 8 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ (𝑘𝐴 ∧ ¬ 𝑘𝑊)) → (𝐹𝑘) = 𝑍)
1918expr 457 . . . . . . 7 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘𝐴) → (¬ 𝑘𝑊 → (𝐹𝑘) = 𝑍))
2019necon1ad 2957 . . . . . 6 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘𝐴) → ((𝐹𝑘) ≠ 𝑍𝑘𝑊))
2120expimpd 454 . . . . 5 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) → 𝑘𝑊))
2214, 21sylbid 239 . . . 4 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) → 𝑘𝑊))
2322ssrdv 3988 . . 3 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) ⊆ 𝑊)
2423ex 413 . 2 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊))
25 supp0prc 8148 . . . 4 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅)
26 0ss 4396 . . . 4 ∅ ⊆ 𝑊
2725, 26eqsstrdi 4036 . . 3 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ 𝑊)
2827a1d 25 . 2 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊))
2924, 28pm2.61i 182 1 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  Vcvv 3474  cdif 3945  wss 3948  c0 4322  dom cdm 5676   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7408   supp csupp 8145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-supp 8146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator