MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppss Structured version   Visualization version   GIF version

Theorem suppss 8183
Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) (Proof shortened by SN, 5-Aug-2024.)
Hypotheses
Ref Expression
suppss.f (𝜑𝐹:𝐴𝐵)
suppss.n ((𝜑𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
Assertion
Ref Expression
suppss (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem suppss
StepHypRef Expression
1 suppss.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
21ffnd 6719 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
32adantl 480 . . . . . 6 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐹 Fn 𝐴)
4 simpll 763 . . . . . 6 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐹 ∈ V)
5 simplr 765 . . . . . 6 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V)
6 elsuppfng 8159 . . . . . 6 ((𝐹 Fn 𝐴𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
73, 4, 5, 6syl3anc 1369 . . . . 5 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
8 eldif 3959 . . . . . . . . 9 (𝑘 ∈ (𝐴𝑊) ↔ (𝑘𝐴 ∧ ¬ 𝑘𝑊))
9 suppss.n . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
109adantll 710 . . . . . . . . 9 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
118, 10sylan2br 593 . . . . . . . 8 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ (𝑘𝐴 ∧ ¬ 𝑘𝑊)) → (𝐹𝑘) = 𝑍)
1211expr 455 . . . . . . 7 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘𝐴) → (¬ 𝑘𝑊 → (𝐹𝑘) = 𝑍))
1312necon1ad 2955 . . . . . 6 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘𝐴) → ((𝐹𝑘) ≠ 𝑍𝑘𝑊))
1413expimpd 452 . . . . 5 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) → 𝑘𝑊))
157, 14sylbid 239 . . . 4 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) → 𝑘𝑊))
1615ssrdv 3989 . . 3 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) ⊆ 𝑊)
1716ex 411 . 2 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊))
18 supp0prc 8153 . . . 4 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅)
19 0ss 4397 . . . 4 ∅ ⊆ 𝑊
2018, 19eqsstrdi 4037 . . 3 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ 𝑊)
2120a1d 25 . 2 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊))
2217, 21pm2.61i 182 1 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wne 2938  Vcvv 3472  cdif 3946  wss 3949  c0 4323   Fn wfn 6539  wf 6540  cfv 6544  (class class class)co 7413   supp csupp 8150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-supp 8151
This theorem is referenced by:  suppofssd  8192  suppcoss  8196  fsuppco2  9402  fsuppcor  9403  cantnfp1lem1  9677  cantnfp1lem3  9679  gsumzaddlem  19832  gsumzmhm  19848  gsum2d2lem  19884  lcomfsupp  20658  frlmssuvc1  21570  frlmsslsp  21572  frlmup2  21575  psrbaglesupp  21698  psrbaglesuppOLD  21699  mvrcl  21772  mplsubglem  21779  mpllsslem  21780  mplsubrglem  21784  evlslem3  21864  mhpvscacl  21918  deg1mul3le  25868  jensen  26727  suppovss  32171  fsuppcurry1  32215  fsuppcurry2  32216  resf1o  32220  suppssnn0  32282  fedgmullem1  33000  cantnfub  42375  cantnfresb  42378
  Copyright terms: Public domain W3C validator