MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppss Structured version   Visualization version   GIF version

Theorem suppss 8217
Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) (Proof shortened by SN, 5-Aug-2024.)
Hypotheses
Ref Expression
suppss.f (𝜑𝐹:𝐴𝐵)
suppss.n ((𝜑𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
Assertion
Ref Expression
suppss (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem suppss
StepHypRef Expression
1 suppss.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
21ffnd 6737 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
32adantl 481 . . . . . 6 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐹 Fn 𝐴)
4 simpll 767 . . . . . 6 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐹 ∈ V)
5 simplr 769 . . . . . 6 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V)
6 elsuppfng 8192 . . . . . 6 ((𝐹 Fn 𝐴𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
73, 4, 5, 6syl3anc 1370 . . . . 5 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
8 eldif 3972 . . . . . . . . 9 (𝑘 ∈ (𝐴𝑊) ↔ (𝑘𝐴 ∧ ¬ 𝑘𝑊))
9 suppss.n . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
109adantll 714 . . . . . . . . 9 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
118, 10sylan2br 595 . . . . . . . 8 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ (𝑘𝐴 ∧ ¬ 𝑘𝑊)) → (𝐹𝑘) = 𝑍)
1211expr 456 . . . . . . 7 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘𝐴) → (¬ 𝑘𝑊 → (𝐹𝑘) = 𝑍))
1312necon1ad 2954 . . . . . 6 ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘𝐴) → ((𝐹𝑘) ≠ 𝑍𝑘𝑊))
1413expimpd 453 . . . . 5 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) → 𝑘𝑊))
157, 14sylbid 240 . . . 4 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) → 𝑘𝑊))
1615ssrdv 4000 . . 3 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) ⊆ 𝑊)
1716ex 412 . 2 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊))
18 supp0prc 8186 . . . 4 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅)
19 0ss 4405 . . . 4 ∅ ⊆ 𝑊
2018, 19eqsstrdi 4049 . . 3 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ 𝑊)
2120a1d 25 . 2 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊))
2217, 21pm2.61i 182 1 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  Vcvv 3477  cdif 3959  wss 3962  c0 4338   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430   supp csupp 8183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-supp 8184
This theorem is referenced by:  suppofssd  8226  suppcoss  8230  fsuppco2  9440  fsuppcor  9441  cantnfp1lem1  9715  cantnfp1lem3  9717  gsumzaddlem  19953  gsumzmhm  19969  gsum2d2lem  20005  lcomfsupp  20916  frlmssuvc1  21831  frlmsslsp  21833  frlmup2  21836  psrbaglesupp  21959  mvrcl  22029  mplsubglem  22036  mpllsslem  22037  mplsubrglem  22041  evlslem3  22121  mhpvscacl  22175  deg1mul3le  26170  jensen  27046  suppovss  32695  fsuppcurry1  32742  fsuppcurry2  32743  resf1o  32747  suppssnn0  32814  elrgspnlem2  33232  fedgmullem1  33656  cantnfub  43310  cantnfresb  43313
  Copyright terms: Public domain W3C validator