| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppss | Structured version Visualization version GIF version | ||
| Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) (Proof shortened by SN, 5-Aug-2024.) |
| Ref | Expression |
|---|---|
| suppss.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| suppss.n | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) |
| Ref | Expression |
|---|---|
| suppss | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppss.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6647 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐹 Fn 𝐴) |
| 4 | simpll 766 | . . . . . 6 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐹 ∈ V) | |
| 5 | simplr 768 | . . . . . 6 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V) | |
| 6 | elsuppfng 8094 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . . . . 5 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) |
| 8 | eldif 3907 | . . . . . . . . 9 ⊢ (𝑘 ∈ (𝐴 ∖ 𝑊) ↔ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊)) | |
| 9 | suppss.n | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) | |
| 10 | 9 | adantll 714 | . . . . . . . . 9 ⊢ ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) |
| 11 | 8, 10 | sylan2br 595 | . . . . . . . 8 ⊢ ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊)) → (𝐹‘𝑘) = 𝑍) |
| 12 | 11 | expr 456 | . . . . . . 7 ⊢ ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → (¬ 𝑘 ∈ 𝑊 → (𝐹‘𝑘) = 𝑍)) |
| 13 | 12 | necon1ad 2945 | . . . . . 6 ⊢ ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘) ≠ 𝑍 → 𝑘 ∈ 𝑊)) |
| 14 | 13 | expimpd 453 | . . . . 5 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) → 𝑘 ∈ 𝑊)) |
| 15 | 7, 14 | sylbid 240 | . . . 4 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) → 𝑘 ∈ 𝑊)) |
| 16 | 15 | ssrdv 3935 | . . 3 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) ⊆ 𝑊) |
| 17 | 16 | ex 412 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)) |
| 18 | supp0prc 8088 | . . . 4 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
| 19 | 0ss 4345 | . . . 4 ⊢ ∅ ⊆ 𝑊 | |
| 20 | 18, 19 | eqsstrdi 3974 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ 𝑊) |
| 21 | 20 | a1d 25 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)) |
| 22 | 17, 21 | pm2.61i 182 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4278 Fn wfn 6471 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 supp csupp 8085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-supp 8086 |
| This theorem is referenced by: suppofssd 8128 suppcoss 8132 fsuppco2 9282 fsuppcor 9283 cantnfp1lem1 9563 cantnfp1lem3 9565 gsumzaddlem 19828 gsumzmhm 19844 gsum2d2lem 19880 lcomfsupp 20830 frlmssuvc1 21726 frlmsslsp 21728 frlmup2 21731 psrbaglesupp 21854 mvrcl 21924 mplsubglem 21931 mpllsslem 21932 mplsubrglem 21936 evlslem3 22010 mhpvscacl 22064 deg1mul3le 26044 jensen 26921 suppovss 32654 fsuppcurry1 32699 fsuppcurry2 32700 resf1o 32705 suppssnn0 32779 elrgspnlem2 33202 mplvrpmrhm 33569 fedgmullem1 33634 cantnfub 43354 cantnfresb 43357 |
| Copyright terms: Public domain | W3C validator |