| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppss | Structured version Visualization version GIF version | ||
| Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) (Proof shortened by SN, 5-Aug-2024.) |
| Ref | Expression |
|---|---|
| suppss.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| suppss.n | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) |
| Ref | Expression |
|---|---|
| suppss | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppss.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6689 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐹 Fn 𝐴) |
| 4 | simpll 766 | . . . . . 6 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐹 ∈ V) | |
| 5 | simplr 768 | . . . . . 6 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V) | |
| 6 | elsuppfng 8148 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . . . . 5 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) |
| 8 | eldif 3924 | . . . . . . . . 9 ⊢ (𝑘 ∈ (𝐴 ∖ 𝑊) ↔ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊)) | |
| 9 | suppss.n | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) | |
| 10 | 9 | adantll 714 | . . . . . . . . 9 ⊢ ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) |
| 11 | 8, 10 | sylan2br 595 | . . . . . . . 8 ⊢ ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊)) → (𝐹‘𝑘) = 𝑍) |
| 12 | 11 | expr 456 | . . . . . . 7 ⊢ ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → (¬ 𝑘 ∈ 𝑊 → (𝐹‘𝑘) = 𝑍)) |
| 13 | 12 | necon1ad 2942 | . . . . . 6 ⊢ ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘) ≠ 𝑍 → 𝑘 ∈ 𝑊)) |
| 14 | 13 | expimpd 453 | . . . . 5 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) → 𝑘 ∈ 𝑊)) |
| 15 | 7, 14 | sylbid 240 | . . . 4 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) → 𝑘 ∈ 𝑊)) |
| 16 | 15 | ssrdv 3952 | . . 3 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) ⊆ 𝑊) |
| 17 | 16 | ex 412 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)) |
| 18 | supp0prc 8142 | . . . 4 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
| 19 | 0ss 4363 | . . . 4 ⊢ ∅ ⊆ 𝑊 | |
| 20 | 18, 19 | eqsstrdi 3991 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ 𝑊) |
| 21 | 20 | a1d 25 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)) |
| 22 | 17, 21 | pm2.61i 182 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4296 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 supp csupp 8139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-supp 8140 |
| This theorem is referenced by: suppofssd 8182 suppcoss 8186 fsuppco2 9354 fsuppcor 9355 cantnfp1lem1 9631 cantnfp1lem3 9633 gsumzaddlem 19851 gsumzmhm 19867 gsum2d2lem 19903 lcomfsupp 20808 frlmssuvc1 21703 frlmsslsp 21705 frlmup2 21708 psrbaglesupp 21831 mvrcl 21901 mplsubglem 21908 mpllsslem 21909 mplsubrglem 21913 evlslem3 21987 mhpvscacl 22041 deg1mul3le 26022 jensen 26899 suppovss 32604 fsuppcurry1 32648 fsuppcurry2 32649 resf1o 32653 suppssnn0 32730 elrgspnlem2 33194 fedgmullem1 33625 cantnfub 43310 cantnfresb 43313 |
| Copyright terms: Public domain | W3C validator |