| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppss | Structured version Visualization version GIF version | ||
| Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) (Proof shortened by SN, 5-Aug-2024.) |
| Ref | Expression |
|---|---|
| suppss.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| suppss.n | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) |
| Ref | Expression |
|---|---|
| suppss | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppss.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6737 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐹 Fn 𝐴) |
| 4 | simpll 767 | . . . . . 6 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐹 ∈ V) | |
| 5 | simplr 769 | . . . . . 6 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V) | |
| 6 | elsuppfng 8194 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . . . . 5 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) |
| 8 | eldif 3961 | . . . . . . . . 9 ⊢ (𝑘 ∈ (𝐴 ∖ 𝑊) ↔ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊)) | |
| 9 | suppss.n | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) | |
| 10 | 9 | adantll 714 | . . . . . . . . 9 ⊢ ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) |
| 11 | 8, 10 | sylan2br 595 | . . . . . . . 8 ⊢ ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊)) → (𝐹‘𝑘) = 𝑍) |
| 12 | 11 | expr 456 | . . . . . . 7 ⊢ ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → (¬ 𝑘 ∈ 𝑊 → (𝐹‘𝑘) = 𝑍)) |
| 13 | 12 | necon1ad 2957 | . . . . . 6 ⊢ ((((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘) ≠ 𝑍 → 𝑘 ∈ 𝑊)) |
| 14 | 13 | expimpd 453 | . . . . 5 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) → 𝑘 ∈ 𝑊)) |
| 15 | 7, 14 | sylbid 240 | . . . 4 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝑘 ∈ (𝐹 supp 𝑍) → 𝑘 ∈ 𝑊)) |
| 16 | 15 | ssrdv 3989 | . . 3 ⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) ⊆ 𝑊) |
| 17 | 16 | ex 412 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)) |
| 18 | supp0prc 8188 | . . . 4 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
| 19 | 0ss 4400 | . . . 4 ⊢ ∅ ⊆ 𝑊 | |
| 20 | 18, 19 | eqsstrdi 4028 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ 𝑊) |
| 21 | 20 | a1d 25 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)) |
| 22 | 17, 21 | pm2.61i 182 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ∖ cdif 3948 ⊆ wss 3951 ∅c0 4333 Fn wfn 6556 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 supp csupp 8185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-supp 8186 |
| This theorem is referenced by: suppofssd 8228 suppcoss 8232 fsuppco2 9443 fsuppcor 9444 cantnfp1lem1 9718 cantnfp1lem3 9720 gsumzaddlem 19939 gsumzmhm 19955 gsum2d2lem 19991 lcomfsupp 20900 frlmssuvc1 21814 frlmsslsp 21816 frlmup2 21819 psrbaglesupp 21942 mvrcl 22012 mplsubglem 22019 mpllsslem 22020 mplsubrglem 22024 evlslem3 22104 mhpvscacl 22158 deg1mul3le 26156 jensen 27032 suppovss 32690 fsuppcurry1 32736 fsuppcurry2 32737 resf1o 32741 suppssnn0 32809 elrgspnlem2 33247 fedgmullem1 33680 cantnfub 43334 cantnfresb 43337 |
| Copyright terms: Public domain | W3C validator |