Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppinisegfi Structured version   Visualization version   GIF version

Theorem fsuppinisegfi 32173
Description: The initial segment (𝐹 “ {𝑌}) of a nonzero 𝑌 is finite if 𝐹 has finite support. (Contributed by Thierry Arnoux, 21-Jun-2024.)
Hypotheses
Ref Expression
fsuppinisegfi.1 (𝜑𝐹𝑉)
fsuppinisegfi.2 (𝜑0𝑊)
fsuppinisegfi.3 (𝜑𝑌 ∈ (V ∖ { 0 }))
fsuppinisegfi.4 (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
fsuppinisegfi (𝜑 → (𝐹 “ {𝑌}) ∈ Fin)

Proof of Theorem fsuppinisegfi
StepHypRef Expression
1 fsuppinisegfi.4 . . 3 (𝜑𝐹 finSupp 0 )
21fsuppimpd 9372 . 2 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
3 fsuppinisegfi.3 . . . . 5 (𝜑𝑌 ∈ (V ∖ { 0 }))
43snssd 4813 . . . 4 (𝜑 → {𝑌} ⊆ (V ∖ { 0 }))
5 imass2 6102 . . . 4 ({𝑌} ⊆ (V ∖ { 0 }) → (𝐹 “ {𝑌}) ⊆ (𝐹 “ (V ∖ { 0 })))
64, 5syl 17 . . 3 (𝜑 → (𝐹 “ {𝑌}) ⊆ (𝐹 “ (V ∖ { 0 })))
7 fsuppinisegfi.1 . . . 4 (𝜑𝐹𝑉)
8 fsuppinisegfi.2 . . . 4 (𝜑0𝑊)
9 suppimacnvss 8161 . . . 4 ((𝐹𝑉0𝑊) → (𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 supp 0 ))
107, 8, 9syl2anc 583 . . 3 (𝜑 → (𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 supp 0 ))
116, 10sstrd 3993 . 2 (𝜑 → (𝐹 “ {𝑌}) ⊆ (𝐹 supp 0 ))
122, 11ssfid 9270 1 (𝜑 → (𝐹 “ {𝑌}) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  Vcvv 3473  cdif 3946  wss 3949  {csn 4629   class class class wbr 5149  ccnv 5676  cima 5680  (class class class)co 7412   supp csupp 8149  Fincfn 8942   finSupp cfsupp 9364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-supp 8150  df-1o 8469  df-en 8943  df-fin 8946  df-fsupp 9365
This theorem is referenced by:  elrspunidl  32817
  Copyright terms: Public domain W3C validator