Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppinisegfi Structured version   Visualization version   GIF version

Theorem fsuppinisegfi 32675
Description: The initial segment (𝐹 “ {𝑌}) of a nonzero 𝑌 is finite if 𝐹 has finite support. (Contributed by Thierry Arnoux, 21-Jun-2024.)
Hypotheses
Ref Expression
fsuppinisegfi.1 (𝜑𝐹𝑉)
fsuppinisegfi.2 (𝜑0𝑊)
fsuppinisegfi.3 (𝜑𝑌 ∈ (V ∖ { 0 }))
fsuppinisegfi.4 (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
fsuppinisegfi (𝜑 → (𝐹 “ {𝑌}) ∈ Fin)

Proof of Theorem fsuppinisegfi
StepHypRef Expression
1 fsuppinisegfi.4 . . 3 (𝜑𝐹 finSupp 0 )
21fsuppimpd 9259 . 2 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
3 fsuppinisegfi.3 . . . . 5 (𝜑𝑌 ∈ (V ∖ { 0 }))
43snssd 4760 . . . 4 (𝜑 → {𝑌} ⊆ (V ∖ { 0 }))
5 imass2 6056 . . . 4 ({𝑌} ⊆ (V ∖ { 0 }) → (𝐹 “ {𝑌}) ⊆ (𝐹 “ (V ∖ { 0 })))
64, 5syl 17 . . 3 (𝜑 → (𝐹 “ {𝑌}) ⊆ (𝐹 “ (V ∖ { 0 })))
7 fsuppinisegfi.1 . . . 4 (𝜑𝐹𝑉)
8 fsuppinisegfi.2 . . . 4 (𝜑0𝑊)
9 suppimacnvss 8109 . . . 4 ((𝐹𝑉0𝑊) → (𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 supp 0 ))
107, 8, 9syl2anc 584 . . 3 (𝜑 → (𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 supp 0 ))
116, 10sstrd 3940 . 2 (𝜑 → (𝐹 “ {𝑌}) ⊆ (𝐹 supp 0 ))
122, 11ssfid 9159 1 (𝜑 → (𝐹 “ {𝑌}) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  cdif 3894  wss 3897  {csn 4575   class class class wbr 5093  ccnv 5618  cima 5622  (class class class)co 7352   supp csupp 8096  Fincfn 8875   finSupp cfsupp 9251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-supp 8097  df-1o 8391  df-en 8876  df-fin 8879  df-fsupp 9252
This theorem is referenced by:  elrspunidl  33400
  Copyright terms: Public domain W3C validator