| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsuppinisegfi | Structured version Visualization version GIF version | ||
| Description: The initial segment (◡𝐹 “ {𝑌}) of a nonzero 𝑌 is finite if 𝐹 has finite support. (Contributed by Thierry Arnoux, 21-Jun-2024.) |
| Ref | Expression |
|---|---|
| fsuppinisegfi.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| fsuppinisegfi.2 | ⊢ (𝜑 → 0 ∈ 𝑊) |
| fsuppinisegfi.3 | ⊢ (𝜑 → 𝑌 ∈ (V ∖ { 0 })) |
| fsuppinisegfi.4 | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Ref | Expression |
|---|---|
| fsuppinisegfi | ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppinisegfi.4 | . . 3 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 2 | 1 | fsuppimpd 9259 | . 2 ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) |
| 3 | fsuppinisegfi.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (V ∖ { 0 })) | |
| 4 | 3 | snssd 4760 | . . . 4 ⊢ (𝜑 → {𝑌} ⊆ (V ∖ { 0 })) |
| 5 | imass2 6056 | . . . 4 ⊢ ({𝑌} ⊆ (V ∖ { 0 }) → (◡𝐹 “ {𝑌}) ⊆ (◡𝐹 “ (V ∖ { 0 }))) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ⊆ (◡𝐹 “ (V ∖ { 0 }))) |
| 7 | fsuppinisegfi.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 8 | fsuppinisegfi.2 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝑊) | |
| 9 | suppimacnvss 8109 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → (◡𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 supp 0 )) | |
| 10 | 7, 8, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 supp 0 )) |
| 11 | 6, 10 | sstrd 3940 | . 2 ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ⊆ (𝐹 supp 0 )) |
| 12 | 2, 11 | ssfid 9159 | 1 ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 {csn 4575 class class class wbr 5093 ◡ccnv 5618 “ cima 5622 (class class class)co 7352 supp csupp 8096 Fincfn 8875 finSupp cfsupp 9251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-supp 8097 df-1o 8391 df-en 8876 df-fin 8879 df-fsupp 9252 |
| This theorem is referenced by: elrspunidl 33400 |
| Copyright terms: Public domain | W3C validator |