| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsuppinisegfi | Structured version Visualization version GIF version | ||
| Description: The initial segment (◡𝐹 “ {𝑌}) of a nonzero 𝑌 is finite if 𝐹 has finite support. (Contributed by Thierry Arnoux, 21-Jun-2024.) |
| Ref | Expression |
|---|---|
| fsuppinisegfi.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| fsuppinisegfi.2 | ⊢ (𝜑 → 0 ∈ 𝑊) |
| fsuppinisegfi.3 | ⊢ (𝜑 → 𝑌 ∈ (V ∖ { 0 })) |
| fsuppinisegfi.4 | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Ref | Expression |
|---|---|
| fsuppinisegfi | ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppinisegfi.4 | . . 3 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 2 | 1 | fsuppimpd 9248 | . 2 ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) |
| 3 | fsuppinisegfi.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (V ∖ { 0 })) | |
| 4 | 3 | snssd 4759 | . . . 4 ⊢ (𝜑 → {𝑌} ⊆ (V ∖ { 0 })) |
| 5 | imass2 6048 | . . . 4 ⊢ ({𝑌} ⊆ (V ∖ { 0 }) → (◡𝐹 “ {𝑌}) ⊆ (◡𝐹 “ (V ∖ { 0 }))) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ⊆ (◡𝐹 “ (V ∖ { 0 }))) |
| 7 | fsuppinisegfi.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 8 | fsuppinisegfi.2 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝑊) | |
| 9 | suppimacnvss 8098 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → (◡𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 supp 0 )) | |
| 10 | 7, 8, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 supp 0 )) |
| 11 | 6, 10 | sstrd 3943 | . 2 ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ⊆ (𝐹 supp 0 )) |
| 12 | 2, 11 | ssfid 9148 | 1 ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 Vcvv 3434 ∖ cdif 3897 ⊆ wss 3900 {csn 4574 class class class wbr 5089 ◡ccnv 5613 “ cima 5617 (class class class)co 7341 supp csupp 8085 Fincfn 8864 finSupp cfsupp 9240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-supp 8086 df-1o 8380 df-en 8865 df-fin 8868 df-fsupp 9241 |
| This theorem is referenced by: elrspunidl 33383 |
| Copyright terms: Public domain | W3C validator |