![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsuppinisegfi | Structured version Visualization version GIF version |
Description: The initial segment (◡𝐹 “ {𝑌}) of a nonzero 𝑌 is finite if 𝐹 has finite support. (Contributed by Thierry Arnoux, 21-Jun-2024.) |
Ref | Expression |
---|---|
fsuppinisegfi.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
fsuppinisegfi.2 | ⊢ (𝜑 → 0 ∈ 𝑊) |
fsuppinisegfi.3 | ⊢ (𝜑 → 𝑌 ∈ (V ∖ { 0 })) |
fsuppinisegfi.4 | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
fsuppinisegfi | ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppinisegfi.4 | . . 3 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
2 | 1 | fsuppimpd 9413 | . 2 ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) |
3 | fsuppinisegfi.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (V ∖ { 0 })) | |
4 | 3 | snssd 4818 | . . . 4 ⊢ (𝜑 → {𝑌} ⊆ (V ∖ { 0 })) |
5 | imass2 6112 | . . . 4 ⊢ ({𝑌} ⊆ (V ∖ { 0 }) → (◡𝐹 “ {𝑌}) ⊆ (◡𝐹 “ (V ∖ { 0 }))) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ⊆ (◡𝐹 “ (V ∖ { 0 }))) |
7 | fsuppinisegfi.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
8 | fsuppinisegfi.2 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝑊) | |
9 | suppimacnvss 8187 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → (◡𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 supp 0 )) | |
10 | 7, 8, 9 | syl2anc 582 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 supp 0 )) |
11 | 6, 10 | sstrd 3990 | . 2 ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ⊆ (𝐹 supp 0 )) |
12 | 2, 11 | ssfid 9301 | 1 ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Vcvv 3462 ∖ cdif 3944 ⊆ wss 3947 {csn 4633 class class class wbr 5153 ◡ccnv 5681 “ cima 5685 (class class class)co 7424 supp csupp 8174 Fincfn 8974 finSupp cfsupp 9405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-supp 8175 df-1o 8496 df-en 8975 df-fin 8978 df-fsupp 9406 |
This theorem is referenced by: elrspunidl 33303 |
Copyright terms: Public domain | W3C validator |