| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsuppinisegfi | Structured version Visualization version GIF version | ||
| Description: The initial segment (◡𝐹 “ {𝑌}) of a nonzero 𝑌 is finite if 𝐹 has finite support. (Contributed by Thierry Arnoux, 21-Jun-2024.) |
| Ref | Expression |
|---|---|
| fsuppinisegfi.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| fsuppinisegfi.2 | ⊢ (𝜑 → 0 ∈ 𝑊) |
| fsuppinisegfi.3 | ⊢ (𝜑 → 𝑌 ∈ (V ∖ { 0 })) |
| fsuppinisegfi.4 | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Ref | Expression |
|---|---|
| fsuppinisegfi | ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppinisegfi.4 | . . 3 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 2 | 1 | fsuppimpd 9327 | . 2 ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) |
| 3 | fsuppinisegfi.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (V ∖ { 0 })) | |
| 4 | 3 | snssd 4776 | . . . 4 ⊢ (𝜑 → {𝑌} ⊆ (V ∖ { 0 })) |
| 5 | imass2 6076 | . . . 4 ⊢ ({𝑌} ⊆ (V ∖ { 0 }) → (◡𝐹 “ {𝑌}) ⊆ (◡𝐹 “ (V ∖ { 0 }))) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ⊆ (◡𝐹 “ (V ∖ { 0 }))) |
| 7 | fsuppinisegfi.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 8 | fsuppinisegfi.2 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝑊) | |
| 9 | suppimacnvss 8155 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → (◡𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 supp 0 )) | |
| 10 | 7, 8, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 supp 0 )) |
| 11 | 6, 10 | sstrd 3960 | . 2 ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ⊆ (𝐹 supp 0 )) |
| 12 | 2, 11 | ssfid 9219 | 1 ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 {csn 4592 class class class wbr 5110 ◡ccnv 5640 “ cima 5644 (class class class)co 7390 supp csupp 8142 Fincfn 8921 finSupp cfsupp 9319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-supp 8143 df-1o 8437 df-en 8922 df-fin 8925 df-fsupp 9320 |
| This theorem is referenced by: elrspunidl 33406 |
| Copyright terms: Public domain | W3C validator |