Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsuppinisegfi | Structured version Visualization version GIF version |
Description: The initial segment (◡𝐹 “ {𝑌}) of a nonzero 𝑌 is finite if 𝐹 has finite support. (Contributed by Thierry Arnoux, 21-Jun-2024.) |
Ref | Expression |
---|---|
fsuppinisegfi.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
fsuppinisegfi.2 | ⊢ (𝜑 → 0 ∈ 𝑊) |
fsuppinisegfi.3 | ⊢ (𝜑 → 𝑌 ∈ (V ∖ { 0 })) |
fsuppinisegfi.4 | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
fsuppinisegfi | ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppinisegfi.4 | . . 3 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
2 | 1 | fsuppimpd 9065 | . 2 ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) |
3 | fsuppinisegfi.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (V ∖ { 0 })) | |
4 | 3 | snssd 4739 | . . . 4 ⊢ (𝜑 → {𝑌} ⊆ (V ∖ { 0 })) |
5 | imass2 5999 | . . . 4 ⊢ ({𝑌} ⊆ (V ∖ { 0 }) → (◡𝐹 “ {𝑌}) ⊆ (◡𝐹 “ (V ∖ { 0 }))) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ⊆ (◡𝐹 “ (V ∖ { 0 }))) |
7 | fsuppinisegfi.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
8 | fsuppinisegfi.2 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝑊) | |
9 | suppimacnvss 7960 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → (◡𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 supp 0 )) | |
10 | 7, 8, 9 | syl2anc 583 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 supp 0 )) |
11 | 6, 10 | sstrd 3927 | . 2 ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ⊆ (𝐹 supp 0 )) |
12 | 2, 11 | ssfid 8971 | 1 ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 class class class wbr 5070 ◡ccnv 5579 “ cima 5583 (class class class)co 7255 supp csupp 7948 Fincfn 8691 finSupp cfsupp 9058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-supp 7949 df-1o 8267 df-en 8692 df-fin 8695 df-fsupp 9059 |
This theorem is referenced by: elrspunidl 31508 |
Copyright terms: Public domain | W3C validator |