Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddwordnexlem3 Structured version   Visualization version   GIF version

Theorem naddwordnexlem3 43491
Description: When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, every natural sum of 𝐴 with a natural number is less that 𝐵. (Contributed by RP, 14-Feb-2025.)
Hypotheses
Ref Expression
naddwordnex.a (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
naddwordnex.b (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
naddwordnex.c (𝜑𝐶𝐷)
naddwordnex.d (𝜑𝐷 ∈ On)
naddwordnex.m (𝜑𝑀 ∈ ω)
naddwordnex.n (𝜑𝑁𝑀)
Assertion
Ref Expression
naddwordnexlem3 (𝜑 → ∀𝑥 ∈ ω (𝐴 +no 𝑥) ∈ 𝐵)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem naddwordnexlem3
StepHypRef Expression
1 naddwordnex.a . . . . . 6 (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
2 omelon 9536 . . . . . . . 8 ω ∈ On
3 naddwordnex.d . . . . . . . . 9 (𝜑𝐷 ∈ On)
4 naddwordnex.c . . . . . . . . 9 (𝜑𝐶𝐷)
5 onelon 6331 . . . . . . . . 9 ((𝐷 ∈ On ∧ 𝐶𝐷) → 𝐶 ∈ On)
63, 4, 5syl2anc 584 . . . . . . . 8 (𝜑𝐶 ∈ On)
7 omcl 8451 . . . . . . . 8 ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o 𝐶) ∈ On)
82, 6, 7sylancr 587 . . . . . . 7 (𝜑 → (ω ·o 𝐶) ∈ On)
9 naddwordnex.m . . . . . . . 8 (𝜑𝑀 ∈ ω)
10 nnon 7802 . . . . . . . 8 (𝑀 ∈ ω → 𝑀 ∈ On)
119, 10syl 17 . . . . . . 7 (𝜑𝑀 ∈ On)
12 oacl 8450 . . . . . . 7 (((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ On) → ((ω ·o 𝐶) +o 𝑀) ∈ On)
138, 11, 12syl2anc 584 . . . . . 6 (𝜑 → ((ω ·o 𝐶) +o 𝑀) ∈ On)
141, 13eqeltrd 2831 . . . . 5 (𝜑𝐴 ∈ On)
15 naddonnn 43487 . . . . 5 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) = (𝐴 +no 𝑥))
1614, 15sylan 580 . . . 4 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) = (𝐴 +no 𝑥))
17 naddwordnex.b . . . . . . . 8 (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
18 naddwordnex.n . . . . . . . 8 (𝜑𝑁𝑀)
191, 17, 4, 3, 9, 18naddwordnexlem0 43488 . . . . . . 7 (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵))
2019simprd 495 . . . . . 6 (𝜑 → (ω ·o suc 𝐶) ⊆ 𝐵)
2120adantr 480 . . . . 5 ((𝜑𝑥 ∈ ω) → (ω ·o suc 𝐶) ⊆ 𝐵)
228, 2jctil 519 . . . . . . . 8 (𝜑 → (ω ∈ On ∧ (ω ·o 𝐶) ∈ On))
2322adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (ω ∈ On ∧ (ω ·o 𝐶) ∈ On))
24 nnacl 8526 . . . . . . . 8 ((𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (𝑀 +o 𝑥) ∈ ω)
259, 24sylan 580 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (𝑀 +o 𝑥) ∈ ω)
26 oaordi 8461 . . . . . . 7 ((ω ∈ On ∧ (ω ·o 𝐶) ∈ On) → ((𝑀 +o 𝑥) ∈ ω → ((ω ·o 𝐶) +o (𝑀 +o 𝑥)) ∈ ((ω ·o 𝐶) +o ω)))
2723, 25, 26sylc 65 . . . . . 6 ((𝜑𝑥 ∈ ω) → ((ω ·o 𝐶) +o (𝑀 +o 𝑥)) ∈ ((ω ·o 𝐶) +o ω))
281adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ω) → 𝐴 = ((ω ·o 𝐶) +o 𝑀))
2928oveq1d 7361 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) = (((ω ·o 𝐶) +o 𝑀) +o 𝑥))
30 nnon 7802 . . . . . . . 8 (𝑥 ∈ ω → 𝑥 ∈ On)
31 oaass 8476 . . . . . . . 8 (((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On) → (((ω ·o 𝐶) +o 𝑀) +o 𝑥) = ((ω ·o 𝐶) +o (𝑀 +o 𝑥)))
328, 11, 30, 31syl2an3an 1424 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (((ω ·o 𝐶) +o 𝑀) +o 𝑥) = ((ω ·o 𝐶) +o (𝑀 +o 𝑥)))
3329, 32eqtrd 2766 . . . . . 6 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) = ((ω ·o 𝐶) +o (𝑀 +o 𝑥)))
346adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ω) → 𝐶 ∈ On)
35 omsuc 8441 . . . . . . 7 ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω))
362, 34, 35sylancr 587 . . . . . 6 ((𝜑𝑥 ∈ ω) → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω))
3727, 33, 363eltr4d 2846 . . . . 5 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ (ω ·o suc 𝐶))
3821, 37sseldd 3930 . . . 4 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ 𝐵)
3916, 38eqeltrrd 2832 . . 3 ((𝜑𝑥 ∈ ω) → (𝐴 +no 𝑥) ∈ 𝐵)
4039ex 412 . 2 (𝜑 → (𝑥 ∈ ω → (𝐴 +no 𝑥) ∈ 𝐵))
4140ralrimiv 3123 1 (𝜑 → ∀𝑥 ∈ ω (𝐴 +no 𝑥) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3897  Oncon0 6306  suc csuc 6308  (class class class)co 7346  ωcom 7796   +o coa 8382   ·o comu 8383   +no cnadd 8580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-oadd 8389  df-omul 8390  df-nadd 8581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator