Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddwordnexlem3 Structured version   Visualization version   GIF version

Theorem naddwordnexlem3 42639
Description: When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, every natural sum of 𝐴 with a natural number is less that 𝐵. (Contributed by RP, 14-Feb-2025.)
Hypotheses
Ref Expression
naddwordnex.a (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
naddwordnex.b (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
naddwordnex.c (𝜑𝐶𝐷)
naddwordnex.d (𝜑𝐷 ∈ On)
naddwordnex.m (𝜑𝑀 ∈ ω)
naddwordnex.n (𝜑𝑁𝑀)
Assertion
Ref Expression
naddwordnexlem3 (𝜑 → ∀𝑥 ∈ ω (𝐴 +no 𝑥) ∈ 𝐵)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem naddwordnexlem3
StepHypRef Expression
1 naddwordnex.a . . . . . 6 (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
2 omelon 9637 . . . . . . . 8 ω ∈ On
3 naddwordnex.d . . . . . . . . 9 (𝜑𝐷 ∈ On)
4 naddwordnex.c . . . . . . . . 9 (𝜑𝐶𝐷)
5 onelon 6379 . . . . . . . . 9 ((𝐷 ∈ On ∧ 𝐶𝐷) → 𝐶 ∈ On)
63, 4, 5syl2anc 583 . . . . . . . 8 (𝜑𝐶 ∈ On)
7 omcl 8531 . . . . . . . 8 ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o 𝐶) ∈ On)
82, 6, 7sylancr 586 . . . . . . 7 (𝜑 → (ω ·o 𝐶) ∈ On)
9 naddwordnex.m . . . . . . . 8 (𝜑𝑀 ∈ ω)
10 nnon 7854 . . . . . . . 8 (𝑀 ∈ ω → 𝑀 ∈ On)
119, 10syl 17 . . . . . . 7 (𝜑𝑀 ∈ On)
12 oacl 8530 . . . . . . 7 (((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ On) → ((ω ·o 𝐶) +o 𝑀) ∈ On)
138, 11, 12syl2anc 583 . . . . . 6 (𝜑 → ((ω ·o 𝐶) +o 𝑀) ∈ On)
141, 13eqeltrd 2825 . . . . 5 (𝜑𝐴 ∈ On)
15 naddonnn 42635 . . . . 5 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) = (𝐴 +no 𝑥))
1614, 15sylan 579 . . . 4 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) = (𝐴 +no 𝑥))
17 naddwordnex.b . . . . . . . 8 (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
18 naddwordnex.n . . . . . . . 8 (𝜑𝑁𝑀)
191, 17, 4, 3, 9, 18naddwordnexlem0 42636 . . . . . . 7 (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵))
2019simprd 495 . . . . . 6 (𝜑 → (ω ·o suc 𝐶) ⊆ 𝐵)
2120adantr 480 . . . . 5 ((𝜑𝑥 ∈ ω) → (ω ·o suc 𝐶) ⊆ 𝐵)
228, 2jctil 519 . . . . . . . 8 (𝜑 → (ω ∈ On ∧ (ω ·o 𝐶) ∈ On))
2322adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (ω ∈ On ∧ (ω ·o 𝐶) ∈ On))
24 nnacl 8606 . . . . . . . 8 ((𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (𝑀 +o 𝑥) ∈ ω)
259, 24sylan 579 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (𝑀 +o 𝑥) ∈ ω)
26 oaordi 8541 . . . . . . 7 ((ω ∈ On ∧ (ω ·o 𝐶) ∈ On) → ((𝑀 +o 𝑥) ∈ ω → ((ω ·o 𝐶) +o (𝑀 +o 𝑥)) ∈ ((ω ·o 𝐶) +o ω)))
2723, 25, 26sylc 65 . . . . . 6 ((𝜑𝑥 ∈ ω) → ((ω ·o 𝐶) +o (𝑀 +o 𝑥)) ∈ ((ω ·o 𝐶) +o ω))
281adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ω) → 𝐴 = ((ω ·o 𝐶) +o 𝑀))
2928oveq1d 7416 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) = (((ω ·o 𝐶) +o 𝑀) +o 𝑥))
30 nnon 7854 . . . . . . . 8 (𝑥 ∈ ω → 𝑥 ∈ On)
31 oaass 8556 . . . . . . . 8 (((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On) → (((ω ·o 𝐶) +o 𝑀) +o 𝑥) = ((ω ·o 𝐶) +o (𝑀 +o 𝑥)))
328, 11, 30, 31syl2an3an 1419 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (((ω ·o 𝐶) +o 𝑀) +o 𝑥) = ((ω ·o 𝐶) +o (𝑀 +o 𝑥)))
3329, 32eqtrd 2764 . . . . . 6 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) = ((ω ·o 𝐶) +o (𝑀 +o 𝑥)))
346adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ω) → 𝐶 ∈ On)
35 omsuc 8521 . . . . . . 7 ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω))
362, 34, 35sylancr 586 . . . . . 6 ((𝜑𝑥 ∈ ω) → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω))
3727, 33, 363eltr4d 2840 . . . . 5 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ (ω ·o suc 𝐶))
3821, 37sseldd 3975 . . . 4 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ 𝐵)
3916, 38eqeltrrd 2826 . . 3 ((𝜑𝑥 ∈ ω) → (𝐴 +no 𝑥) ∈ 𝐵)
4039ex 412 . 2 (𝜑 → (𝑥 ∈ ω → (𝐴 +no 𝑥) ∈ 𝐵))
4140ralrimiv 3137 1 (𝜑 → ∀𝑥 ∈ ω (𝐴 +no 𝑥) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3053  wss 3940  Oncon0 6354  suc csuc 6356  (class class class)co 7401  ωcom 7848   +o coa 8458   ·o comu 8459   +no cnadd 8660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-oadd 8465  df-omul 8466  df-nadd 8661
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator