Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddwordnexlem3 Structured version   Visualization version   GIF version

Theorem naddwordnexlem3 43392
Description: When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, every natural sum of 𝐴 with a natural number is less that 𝐵. (Contributed by RP, 14-Feb-2025.)
Hypotheses
Ref Expression
naddwordnex.a (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
naddwordnex.b (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
naddwordnex.c (𝜑𝐶𝐷)
naddwordnex.d (𝜑𝐷 ∈ On)
naddwordnex.m (𝜑𝑀 ∈ ω)
naddwordnex.n (𝜑𝑁𝑀)
Assertion
Ref Expression
naddwordnexlem3 (𝜑 → ∀𝑥 ∈ ω (𝐴 +no 𝑥) ∈ 𝐵)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem naddwordnexlem3
StepHypRef Expression
1 naddwordnex.a . . . . . 6 (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
2 omelon 9542 . . . . . . . 8 ω ∈ On
3 naddwordnex.d . . . . . . . . 9 (𝜑𝐷 ∈ On)
4 naddwordnex.c . . . . . . . . 9 (𝜑𝐶𝐷)
5 onelon 6332 . . . . . . . . 9 ((𝐷 ∈ On ∧ 𝐶𝐷) → 𝐶 ∈ On)
63, 4, 5syl2anc 584 . . . . . . . 8 (𝜑𝐶 ∈ On)
7 omcl 8454 . . . . . . . 8 ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o 𝐶) ∈ On)
82, 6, 7sylancr 587 . . . . . . 7 (𝜑 → (ω ·o 𝐶) ∈ On)
9 naddwordnex.m . . . . . . . 8 (𝜑𝑀 ∈ ω)
10 nnon 7805 . . . . . . . 8 (𝑀 ∈ ω → 𝑀 ∈ On)
119, 10syl 17 . . . . . . 7 (𝜑𝑀 ∈ On)
12 oacl 8453 . . . . . . 7 (((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ On) → ((ω ·o 𝐶) +o 𝑀) ∈ On)
138, 11, 12syl2anc 584 . . . . . 6 (𝜑 → ((ω ·o 𝐶) +o 𝑀) ∈ On)
141, 13eqeltrd 2828 . . . . 5 (𝜑𝐴 ∈ On)
15 naddonnn 43388 . . . . 5 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) = (𝐴 +no 𝑥))
1614, 15sylan 580 . . . 4 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) = (𝐴 +no 𝑥))
17 naddwordnex.b . . . . . . . 8 (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
18 naddwordnex.n . . . . . . . 8 (𝜑𝑁𝑀)
191, 17, 4, 3, 9, 18naddwordnexlem0 43389 . . . . . . 7 (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵))
2019simprd 495 . . . . . 6 (𝜑 → (ω ·o suc 𝐶) ⊆ 𝐵)
2120adantr 480 . . . . 5 ((𝜑𝑥 ∈ ω) → (ω ·o suc 𝐶) ⊆ 𝐵)
228, 2jctil 519 . . . . . . . 8 (𝜑 → (ω ∈ On ∧ (ω ·o 𝐶) ∈ On))
2322adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (ω ∈ On ∧ (ω ·o 𝐶) ∈ On))
24 nnacl 8529 . . . . . . . 8 ((𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (𝑀 +o 𝑥) ∈ ω)
259, 24sylan 580 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (𝑀 +o 𝑥) ∈ ω)
26 oaordi 8464 . . . . . . 7 ((ω ∈ On ∧ (ω ·o 𝐶) ∈ On) → ((𝑀 +o 𝑥) ∈ ω → ((ω ·o 𝐶) +o (𝑀 +o 𝑥)) ∈ ((ω ·o 𝐶) +o ω)))
2723, 25, 26sylc 65 . . . . . 6 ((𝜑𝑥 ∈ ω) → ((ω ·o 𝐶) +o (𝑀 +o 𝑥)) ∈ ((ω ·o 𝐶) +o ω))
281adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ω) → 𝐴 = ((ω ·o 𝐶) +o 𝑀))
2928oveq1d 7364 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) = (((ω ·o 𝐶) +o 𝑀) +o 𝑥))
30 nnon 7805 . . . . . . . 8 (𝑥 ∈ ω → 𝑥 ∈ On)
31 oaass 8479 . . . . . . . 8 (((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On) → (((ω ·o 𝐶) +o 𝑀) +o 𝑥) = ((ω ·o 𝐶) +o (𝑀 +o 𝑥)))
328, 11, 30, 31syl2an3an 1424 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (((ω ·o 𝐶) +o 𝑀) +o 𝑥) = ((ω ·o 𝐶) +o (𝑀 +o 𝑥)))
3329, 32eqtrd 2764 . . . . . 6 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) = ((ω ·o 𝐶) +o (𝑀 +o 𝑥)))
346adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ω) → 𝐶 ∈ On)
35 omsuc 8444 . . . . . . 7 ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω))
362, 34, 35sylancr 587 . . . . . 6 ((𝜑𝑥 ∈ ω) → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω))
3727, 33, 363eltr4d 2843 . . . . 5 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ (ω ·o suc 𝐶))
3821, 37sseldd 3936 . . . 4 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ 𝐵)
3916, 38eqeltrrd 2829 . . 3 ((𝜑𝑥 ∈ ω) → (𝐴 +no 𝑥) ∈ 𝐵)
4039ex 412 . 2 (𝜑 → (𝑥 ∈ ω → (𝐴 +no 𝑥) ∈ 𝐵))
4140ralrimiv 3120 1 (𝜑 → ∀𝑥 ∈ ω (𝐴 +no 𝑥) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3903  Oncon0 6307  suc csuc 6309  (class class class)co 7349  ωcom 7799   +o coa 8385   ·o comu 8386   +no cnadd 8583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-oadd 8392  df-omul 8393  df-nadd 8584
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator