Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddwordnexlem3 Structured version   Visualization version   GIF version

Theorem naddwordnexlem3 43389
Description: When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, every natural sum of 𝐴 with a natural number is less that 𝐵. (Contributed by RP, 14-Feb-2025.)
Hypotheses
Ref Expression
naddwordnex.a (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
naddwordnex.b (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
naddwordnex.c (𝜑𝐶𝐷)
naddwordnex.d (𝜑𝐷 ∈ On)
naddwordnex.m (𝜑𝑀 ∈ ω)
naddwordnex.n (𝜑𝑁𝑀)
Assertion
Ref Expression
naddwordnexlem3 (𝜑 → ∀𝑥 ∈ ω (𝐴 +no 𝑥) ∈ 𝐵)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem naddwordnexlem3
StepHypRef Expression
1 naddwordnex.a . . . . . 6 (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
2 omelon 9684 . . . . . . . 8 ω ∈ On
3 naddwordnex.d . . . . . . . . 9 (𝜑𝐷 ∈ On)
4 naddwordnex.c . . . . . . . . 9 (𝜑𝐶𝐷)
5 onelon 6411 . . . . . . . . 9 ((𝐷 ∈ On ∧ 𝐶𝐷) → 𝐶 ∈ On)
63, 4, 5syl2anc 584 . . . . . . . 8 (𝜑𝐶 ∈ On)
7 omcl 8573 . . . . . . . 8 ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o 𝐶) ∈ On)
82, 6, 7sylancr 587 . . . . . . 7 (𝜑 → (ω ·o 𝐶) ∈ On)
9 naddwordnex.m . . . . . . . 8 (𝜑𝑀 ∈ ω)
10 nnon 7893 . . . . . . . 8 (𝑀 ∈ ω → 𝑀 ∈ On)
119, 10syl 17 . . . . . . 7 (𝜑𝑀 ∈ On)
12 oacl 8572 . . . . . . 7 (((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ On) → ((ω ·o 𝐶) +o 𝑀) ∈ On)
138, 11, 12syl2anc 584 . . . . . 6 (𝜑 → ((ω ·o 𝐶) +o 𝑀) ∈ On)
141, 13eqeltrd 2839 . . . . 5 (𝜑𝐴 ∈ On)
15 naddonnn 43385 . . . . 5 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) = (𝐴 +no 𝑥))
1614, 15sylan 580 . . . 4 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) = (𝐴 +no 𝑥))
17 naddwordnex.b . . . . . . . 8 (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
18 naddwordnex.n . . . . . . . 8 (𝜑𝑁𝑀)
191, 17, 4, 3, 9, 18naddwordnexlem0 43386 . . . . . . 7 (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵))
2019simprd 495 . . . . . 6 (𝜑 → (ω ·o suc 𝐶) ⊆ 𝐵)
2120adantr 480 . . . . 5 ((𝜑𝑥 ∈ ω) → (ω ·o suc 𝐶) ⊆ 𝐵)
228, 2jctil 519 . . . . . . . 8 (𝜑 → (ω ∈ On ∧ (ω ·o 𝐶) ∈ On))
2322adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (ω ∈ On ∧ (ω ·o 𝐶) ∈ On))
24 nnacl 8648 . . . . . . . 8 ((𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (𝑀 +o 𝑥) ∈ ω)
259, 24sylan 580 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (𝑀 +o 𝑥) ∈ ω)
26 oaordi 8583 . . . . . . 7 ((ω ∈ On ∧ (ω ·o 𝐶) ∈ On) → ((𝑀 +o 𝑥) ∈ ω → ((ω ·o 𝐶) +o (𝑀 +o 𝑥)) ∈ ((ω ·o 𝐶) +o ω)))
2723, 25, 26sylc 65 . . . . . 6 ((𝜑𝑥 ∈ ω) → ((ω ·o 𝐶) +o (𝑀 +o 𝑥)) ∈ ((ω ·o 𝐶) +o ω))
281adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ω) → 𝐴 = ((ω ·o 𝐶) +o 𝑀))
2928oveq1d 7446 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) = (((ω ·o 𝐶) +o 𝑀) +o 𝑥))
30 nnon 7893 . . . . . . . 8 (𝑥 ∈ ω → 𝑥 ∈ On)
31 oaass 8598 . . . . . . . 8 (((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On) → (((ω ·o 𝐶) +o 𝑀) +o 𝑥) = ((ω ·o 𝐶) +o (𝑀 +o 𝑥)))
328, 11, 30, 31syl2an3an 1421 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (((ω ·o 𝐶) +o 𝑀) +o 𝑥) = ((ω ·o 𝐶) +o (𝑀 +o 𝑥)))
3329, 32eqtrd 2775 . . . . . 6 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) = ((ω ·o 𝐶) +o (𝑀 +o 𝑥)))
346adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ω) → 𝐶 ∈ On)
35 omsuc 8563 . . . . . . 7 ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω))
362, 34, 35sylancr 587 . . . . . 6 ((𝜑𝑥 ∈ ω) → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω))
3727, 33, 363eltr4d 2854 . . . . 5 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ (ω ·o suc 𝐶))
3821, 37sseldd 3996 . . . 4 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ 𝐵)
3916, 38eqeltrrd 2840 . . 3 ((𝜑𝑥 ∈ ω) → (𝐴 +no 𝑥) ∈ 𝐵)
4039ex 412 . 2 (𝜑 → (𝑥 ∈ ω → (𝐴 +no 𝑥) ∈ 𝐵))
4140ralrimiv 3143 1 (𝜑 → ∀𝑥 ∈ ω (𝐴 +no 𝑥) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wss 3963  Oncon0 6386  suc csuc 6388  (class class class)co 7431  ωcom 7887   +o coa 8502   ·o comu 8503   +no cnadd 8702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-oadd 8509  df-omul 8510  df-nadd 8703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator