Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddwordnexlem3 Structured version   Visualization version   GIF version

Theorem naddwordnexlem3 43361
Description: When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, every natural sum of 𝐴 with a natural number is less that 𝐵. (Contributed by RP, 14-Feb-2025.)
Hypotheses
Ref Expression
naddwordnex.a (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
naddwordnex.b (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
naddwordnex.c (𝜑𝐶𝐷)
naddwordnex.d (𝜑𝐷 ∈ On)
naddwordnex.m (𝜑𝑀 ∈ ω)
naddwordnex.n (𝜑𝑁𝑀)
Assertion
Ref Expression
naddwordnexlem3 (𝜑 → ∀𝑥 ∈ ω (𝐴 +no 𝑥) ∈ 𝐵)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem naddwordnexlem3
StepHypRef Expression
1 naddwordnex.a . . . . . 6 (𝜑𝐴 = ((ω ·o 𝐶) +o 𝑀))
2 omelon 9715 . . . . . . . 8 ω ∈ On
3 naddwordnex.d . . . . . . . . 9 (𝜑𝐷 ∈ On)
4 naddwordnex.c . . . . . . . . 9 (𝜑𝐶𝐷)
5 onelon 6420 . . . . . . . . 9 ((𝐷 ∈ On ∧ 𝐶𝐷) → 𝐶 ∈ On)
63, 4, 5syl2anc 583 . . . . . . . 8 (𝜑𝐶 ∈ On)
7 omcl 8592 . . . . . . . 8 ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o 𝐶) ∈ On)
82, 6, 7sylancr 586 . . . . . . 7 (𝜑 → (ω ·o 𝐶) ∈ On)
9 naddwordnex.m . . . . . . . 8 (𝜑𝑀 ∈ ω)
10 nnon 7909 . . . . . . . 8 (𝑀 ∈ ω → 𝑀 ∈ On)
119, 10syl 17 . . . . . . 7 (𝜑𝑀 ∈ On)
12 oacl 8591 . . . . . . 7 (((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ On) → ((ω ·o 𝐶) +o 𝑀) ∈ On)
138, 11, 12syl2anc 583 . . . . . 6 (𝜑 → ((ω ·o 𝐶) +o 𝑀) ∈ On)
141, 13eqeltrd 2844 . . . . 5 (𝜑𝐴 ∈ On)
15 naddonnn 43357 . . . . 5 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) = (𝐴 +no 𝑥))
1614, 15sylan 579 . . . 4 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) = (𝐴 +no 𝑥))
17 naddwordnex.b . . . . . . . 8 (𝜑𝐵 = ((ω ·o 𝐷) +o 𝑁))
18 naddwordnex.n . . . . . . . 8 (𝜑𝑁𝑀)
191, 17, 4, 3, 9, 18naddwordnexlem0 43358 . . . . . . 7 (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵))
2019simprd 495 . . . . . 6 (𝜑 → (ω ·o suc 𝐶) ⊆ 𝐵)
2120adantr 480 . . . . 5 ((𝜑𝑥 ∈ ω) → (ω ·o suc 𝐶) ⊆ 𝐵)
228, 2jctil 519 . . . . . . . 8 (𝜑 → (ω ∈ On ∧ (ω ·o 𝐶) ∈ On))
2322adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (ω ∈ On ∧ (ω ·o 𝐶) ∈ On))
24 nnacl 8667 . . . . . . . 8 ((𝑀 ∈ ω ∧ 𝑥 ∈ ω) → (𝑀 +o 𝑥) ∈ ω)
259, 24sylan 579 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (𝑀 +o 𝑥) ∈ ω)
26 oaordi 8602 . . . . . . 7 ((ω ∈ On ∧ (ω ·o 𝐶) ∈ On) → ((𝑀 +o 𝑥) ∈ ω → ((ω ·o 𝐶) +o (𝑀 +o 𝑥)) ∈ ((ω ·o 𝐶) +o ω)))
2723, 25, 26sylc 65 . . . . . 6 ((𝜑𝑥 ∈ ω) → ((ω ·o 𝐶) +o (𝑀 +o 𝑥)) ∈ ((ω ·o 𝐶) +o ω))
281adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ω) → 𝐴 = ((ω ·o 𝐶) +o 𝑀))
2928oveq1d 7463 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) = (((ω ·o 𝐶) +o 𝑀) +o 𝑥))
30 nnon 7909 . . . . . . . 8 (𝑥 ∈ ω → 𝑥 ∈ On)
31 oaass 8617 . . . . . . . 8 (((ω ·o 𝐶) ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On) → (((ω ·o 𝐶) +o 𝑀) +o 𝑥) = ((ω ·o 𝐶) +o (𝑀 +o 𝑥)))
328, 11, 30, 31syl2an3an 1422 . . . . . . 7 ((𝜑𝑥 ∈ ω) → (((ω ·o 𝐶) +o 𝑀) +o 𝑥) = ((ω ·o 𝐶) +o (𝑀 +o 𝑥)))
3329, 32eqtrd 2780 . . . . . 6 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) = ((ω ·o 𝐶) +o (𝑀 +o 𝑥)))
346adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ω) → 𝐶 ∈ On)
35 omsuc 8582 . . . . . . 7 ((ω ∈ On ∧ 𝐶 ∈ On) → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω))
362, 34, 35sylancr 586 . . . . . 6 ((𝜑𝑥 ∈ ω) → (ω ·o suc 𝐶) = ((ω ·o 𝐶) +o ω))
3727, 33, 363eltr4d 2859 . . . . 5 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ (ω ·o suc 𝐶))
3821, 37sseldd 4009 . . . 4 ((𝜑𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ 𝐵)
3916, 38eqeltrrd 2845 . . 3 ((𝜑𝑥 ∈ ω) → (𝐴 +no 𝑥) ∈ 𝐵)
4039ex 412 . 2 (𝜑 → (𝑥 ∈ ω → (𝐴 +no 𝑥) ∈ 𝐵))
4140ralrimiv 3151 1 (𝜑 → ∀𝑥 ∈ ω (𝐴 +no 𝑥) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976  Oncon0 6395  suc csuc 6397  (class class class)co 7448  ωcom 7903   +o coa 8519   ·o comu 8520   +no cnadd 8721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-oadd 8526  df-omul 8527  df-nadd 8722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator