MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem2 Structured version   Visualization version   GIF version

Theorem ftalem2 27117
Description: Lemma for fta 27123. There exists some 𝑟 such that 𝐹 has magnitude greater than 𝐹(0) outside the closed ball B(0,r). (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem2.5 𝑈 = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1))
ftalem2.6 𝑇 = ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2))
Assertion
Ref Expression
ftalem2 (𝜑 → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
Distinct variable groups:   𝑠,𝑟,𝑥,𝐴   𝑁,𝑟,𝑠,𝑥   𝐹,𝑟,𝑠,𝑥   𝜑,𝑠,𝑥   𝑆,𝑠   𝑇,𝑟,𝑥   𝑈,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑟)   𝑆(𝑥,𝑟)   𝑇(𝑠)   𝑈(𝑠)

Proof of Theorem ftalem2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftalem.1 . . 3 𝐴 = (coeff‘𝐹)
2 ftalem.2 . . 3 𝑁 = (deg‘𝐹)
3 ftalem.3 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
4 ftalem.4 . . 3 (𝜑𝑁 ∈ ℕ)
51coef3 26271 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
63, 5syl 17 . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
74nnnn0d 12587 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
86, 7ffvelcdmd 7105 . . . . 5 (𝜑 → (𝐴𝑁) ∈ ℂ)
94nnne0d 12316 . . . . . 6 (𝜑𝑁 ≠ 0)
102, 1dgreq0 26305 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
11 fveq2 6906 . . . . . . . . . . 11 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
12 dgr0 26302 . . . . . . . . . . 11 (deg‘0𝑝) = 0
1311, 12eqtrdi 2793 . . . . . . . . . 10 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
142, 13eqtrid 2789 . . . . . . . . 9 (𝐹 = 0𝑝𝑁 = 0)
1510, 14biimtrrdi 254 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → ((𝐴𝑁) = 0 → 𝑁 = 0))
163, 15syl 17 . . . . . . 7 (𝜑 → ((𝐴𝑁) = 0 → 𝑁 = 0))
1716necon3d 2961 . . . . . 6 (𝜑 → (𝑁 ≠ 0 → (𝐴𝑁) ≠ 0))
189, 17mpd 15 . . . . 5 (𝜑 → (𝐴𝑁) ≠ 0)
198, 18absrpcld 15487 . . . 4 (𝜑 → (abs‘(𝐴𝑁)) ∈ ℝ+)
2019rphalfcld 13089 . . 3 (𝜑 → ((abs‘(𝐴𝑁)) / 2) ∈ ℝ+)
21 2fveq3 6911 . . . . 5 (𝑛 = 𝑘 → (abs‘(𝐴𝑛)) = (abs‘(𝐴𝑘)))
2221cbvsumv 15732 . . . 4 Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑛)) = Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘))
2322oveq1i 7441 . . 3 𝑛 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑛)) / ((abs‘(𝐴𝑁)) / 2)) = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / ((abs‘(𝐴𝑁)) / 2))
241, 2, 3, 4, 20, 23ftalem1 27116 . 2 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))))
25 ftalem2.5 . . . . . 6 𝑈 = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1))
26 ftalem2.6 . . . . . . . . 9 𝑇 = ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2))
27 plyf 26237 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
283, 27syl 17 . . . . . . . . . . . 12 (𝜑𝐹:ℂ⟶ℂ)
29 0cn 11253 . . . . . . . . . . . 12 0 ∈ ℂ
30 ffvelcdm 7101 . . . . . . . . . . . 12 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
3128, 29, 30sylancl 586 . . . . . . . . . . 11 (𝜑 → (𝐹‘0) ∈ ℂ)
3231abscld 15475 . . . . . . . . . 10 (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ)
3332, 20rerpdivcld 13108 . . . . . . . . 9 (𝜑 → ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2)) ∈ ℝ)
3426, 33eqeltrid 2845 . . . . . . . 8 (𝜑𝑇 ∈ ℝ)
3534adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → 𝑇 ∈ ℝ)
36 simpr 484 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℝ)
37 1re 11261 . . . . . . . 8 1 ∈ ℝ
38 ifcl 4571 . . . . . . . 8 ((𝑠 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ)
3936, 37, 38sylancl 586 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ)
4035, 39ifcld 4572 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)) ∈ ℝ)
4125, 40eqeltrid 2845 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 𝑈 ∈ ℝ)
42 0red 11264 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 0 ∈ ℝ)
43 1red 11262 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
44 0lt1 11785 . . . . . . 7 0 < 1
4544a1i 11 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 0 < 1)
46 max1 13227 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑠, 𝑠, 1))
4737, 36, 46sylancr 587 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑠, 𝑠, 1))
48 max1 13227 . . . . . . . . 9 ((if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ ∧ 𝑇 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
4939, 35, 48syl2anc 584 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
5049, 25breqtrrdi 5185 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑈)
5143, 39, 41, 47, 50letrd 11418 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 1 ≤ 𝑈)
5242, 43, 41, 45, 51ltletrd 11421 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 0 < 𝑈)
5341, 52elrpd 13074 . . . 4 ((𝜑𝑠 ∈ ℝ) → 𝑈 ∈ ℝ+)
54 max2 13229 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → 𝑠 ≤ if(1 ≤ 𝑠, 𝑠, 1))
5537, 36, 54sylancr 587 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → 𝑠 ≤ if(1 ≤ 𝑠, 𝑠, 1))
5636, 39, 41, 55, 50letrd 11418 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → 𝑠𝑈)
5756adantr 480 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → 𝑠𝑈)
58 abscl 15317 . . . . . . . . 9 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
59 lelttr 11351 . . . . . . . . 9 ((𝑠 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (abs‘𝑥) ∈ ℝ) → ((𝑠𝑈𝑈 < (abs‘𝑥)) → 𝑠 < (abs‘𝑥)))
6036, 41, 58, 59syl2an3an 1424 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑠𝑈𝑈 < (abs‘𝑥)) → 𝑠 < (abs‘𝑥)))
6157, 60mpand 695 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → (𝑈 < (abs‘𝑥) → 𝑠 < (abs‘𝑥)))
6261imim1d 82 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → (𝑈 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))))
6328ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝐹:ℂ⟶ℂ)
64 simprl 771 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑥 ∈ ℂ)
6563, 64ffvelcdmd 7105 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (𝐹𝑥) ∈ ℂ)
668ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (𝐴𝑁) ∈ ℂ)
677ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑁 ∈ ℕ0)
6864, 67expcld 14186 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (𝑥𝑁) ∈ ℂ)
6966, 68mulcld 11281 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((𝐴𝑁) · (𝑥𝑁)) ∈ ℂ)
7065, 69subcld 11620 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))) ∈ ℂ)
7170abscld 15475 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) ∈ ℝ)
7269abscld 15475 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) ∈ ℝ)
7372rehalfcld 12513 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℝ)
7471, 73, 72ltsub2d 11873 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ↔ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))))
7566, 68absmuld 15493 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) = ((abs‘(𝐴𝑁)) · (abs‘(𝑥𝑁))))
7664, 67absexpd 15491 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝑥𝑁)) = ((abs‘𝑥)↑𝑁))
7776oveq2d 7447 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐴𝑁)) · (abs‘(𝑥𝑁))) = ((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)))
7875, 77eqtrd 2777 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) = ((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)))
7978oveq1d 7446 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) = (((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)) / 2))
8066abscld 15475 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐴𝑁)) ∈ ℝ)
8180recnd 11289 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐴𝑁)) ∈ ℂ)
8258ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘𝑥) ∈ ℝ)
8382, 67reexpcld 14203 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) ∈ ℝ)
8483recnd 11289 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) ∈ ℂ)
85 2cnd 12344 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 2 ∈ ℂ)
86 2ne0 12370 . . . . . . . . . . . . . . 15 2 ≠ 0
8786a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 2 ≠ 0)
8881, 84, 85, 87div23d 12080 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)) / 2) = (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
8979, 88eqtrd 2777 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) = (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
9089breq2d 5155 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ↔ (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))))
9172recnd 11289 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) ∈ ℂ)
92912halvesd 12512 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) + ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = (abs‘((𝐴𝑁) · (𝑥𝑁))))
9392oveq1d 7446 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) + ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)))
9473recnd 11289 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℂ)
9594, 94pncand 11621 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) + ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2))
9693, 95eqtr3d 2779 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2))
9796breq1d 5153 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ↔ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))))
9874, 90, 973bitr3d 309 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) ↔ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))))
9969, 65subcld 11620 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)) ∈ ℂ)
10069, 99abs2difd 15496 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))) ≤ (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))))
10169, 65abssubd 15492 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥))) = (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))
102101oveq2d 7447 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))))
10369, 65nncand 11625 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((𝐴𝑁) · (𝑥𝑁)) − (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥))) = (𝐹𝑥))
104103fveq2d 6910 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))) = (abs‘(𝐹𝑥)))
105100, 102, 1043brtr3d 5174 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ≤ (abs‘(𝐹𝑥)))
10672, 71resubcld 11691 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∈ ℝ)
10765abscld 15475 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹𝑥)) ∈ ℝ)
108 ltletr 11353 . . . . . . . . . . . 12 ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℝ ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∈ ℝ ∧ (abs‘(𝐹𝑥)) ∈ ℝ) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ≤ (abs‘(𝐹𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
10973, 106, 107, 108syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ≤ (abs‘(𝐹𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
110105, 109mpan2d 694 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
11198, 110sylbid 240 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
11232ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) ∈ ℝ)
11320ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐴𝑁)) / 2) ∈ ℝ+)
114113rpred 13077 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐴𝑁)) / 2) ∈ ℝ)
115114, 82remulcld 11291 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)) ∈ ℝ)
11689, 73eqeltrrd 2842 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) ∈ ℝ)
11735adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑇 ∈ ℝ)
11841adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑈 ∈ ℝ)
119 max2 13229 . . . . . . . . . . . . . . . . . 18 ((if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ ∧ 𝑇 ∈ ℝ) → 𝑇 ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
12039, 35, 119syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ ℝ) → 𝑇 ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
121120, 25breqtrrdi 5185 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ ℝ) → 𝑇𝑈)
122121adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑇𝑈)
123 simprr 773 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑈 < (abs‘𝑥))
124117, 118, 82, 122, 123lelttrd 11419 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑇 < (abs‘𝑥))
12526, 124eqbrtrrid 5179 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2)) < (abs‘𝑥))
126112, 82, 113ltdivmuld 13128 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2)) < (abs‘𝑥) ↔ (abs‘(𝐹‘0)) < (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥))))
127125, 126mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) < (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)))
12882recnd 11289 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘𝑥) ∈ ℂ)
129128exp1d 14181 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑1) = (abs‘𝑥))
130 1red 11262 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 ∈ ℝ)
13151adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 ≤ 𝑈)
132130, 118, 82, 131, 123lelttrd 11419 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 < (abs‘𝑥))
133130, 82, 132ltled 11409 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 ≤ (abs‘𝑥))
1344ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑁 ∈ ℕ)
135 nnuz 12921 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
136134, 135eleqtrdi 2851 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑁 ∈ (ℤ‘1))
13782, 133, 136leexp2ad 14293 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑1) ≤ ((abs‘𝑥)↑𝑁))
138129, 137eqbrtrrd 5167 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘𝑥) ≤ ((abs‘𝑥)↑𝑁))
13982, 83, 113lemul2d 13121 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥) ≤ ((abs‘𝑥)↑𝑁) ↔ (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)) ≤ (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))))
140138, 139mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)) ≤ (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
141112, 115, 116, 127, 140ltletrd 11421 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
142141, 89breqtrrd 5171 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2))
143 lttr 11337 . . . . . . . . . . 11 (((abs‘(𝐹‘0)) ∈ ℝ ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℝ ∧ (abs‘(𝐹𝑥)) ∈ ℝ) → (((abs‘(𝐹‘0)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
144112, 73, 107, 143syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐹‘0)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
145142, 144mpand 695 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
146111, 145syld 47 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
147146expr 456 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → (𝑈 < (abs‘𝑥) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
148147a2d 29 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑈 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
14962, 148syld 47 . . . . 5 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
150149ralimdva 3167 . . . 4 ((𝜑𝑠 ∈ ℝ) → (∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → ∀𝑥 ∈ ℂ (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
151 breq1 5146 . . . . 5 (𝑟 = 𝑈 → (𝑟 < (abs‘𝑥) ↔ 𝑈 < (abs‘𝑥)))
152151rspceaimv 3628 . . . 4 ((𝑈 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))) → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
15353, 150, 152syl6an 684 . . 3 ((𝜑𝑠 ∈ ℝ) → (∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
154153rexlimdva 3155 . 2 (𝜑 → (∃𝑠 ∈ ℝ ∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
15524, 154mpd 15 1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  ifcif 4525   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cuz 12878  +crp 13034  ...cfz 13547  cexp 14102  abscabs 15273  Σcsu 15722  0𝑝c0p 25704  Polycply 26223  coeffccoe 26225  degcdgr 26226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-0p 25705  df-ply 26227  df-coe 26229  df-dgr 26230
This theorem is referenced by:  fta  27123
  Copyright terms: Public domain W3C validator