MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem2 Structured version   Visualization version   GIF version

Theorem ftalem2 26232
Description: Lemma for fta 26238. There exists some 𝑟 such that 𝐹 has magnitude greater than 𝐹(0) outside the closed ball B(0,r). (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem2.5 𝑈 = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1))
ftalem2.6 𝑇 = ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2))
Assertion
Ref Expression
ftalem2 (𝜑 → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
Distinct variable groups:   𝑠,𝑟,𝑥,𝐴   𝑁,𝑟,𝑠,𝑥   𝐹,𝑟,𝑠,𝑥   𝜑,𝑠,𝑥   𝑆,𝑠   𝑇,𝑟,𝑥   𝑈,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑟)   𝑆(𝑥,𝑟)   𝑇(𝑠)   𝑈(𝑠)

Proof of Theorem ftalem2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftalem.1 . . 3 𝐴 = (coeff‘𝐹)
2 ftalem.2 . . 3 𝑁 = (deg‘𝐹)
3 ftalem.3 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
4 ftalem.4 . . 3 (𝜑𝑁 ∈ ℕ)
51coef3 25402 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
63, 5syl 17 . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
74nnnn0d 12302 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
86, 7ffvelrnd 6971 . . . . 5 (𝜑 → (𝐴𝑁) ∈ ℂ)
94nnne0d 12032 . . . . . 6 (𝜑𝑁 ≠ 0)
102, 1dgreq0 25435 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
11 fveq2 6783 . . . . . . . . . . 11 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
12 dgr0 25432 . . . . . . . . . . 11 (deg‘0𝑝) = 0
1311, 12eqtrdi 2795 . . . . . . . . . 10 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
142, 13eqtrid 2791 . . . . . . . . 9 (𝐹 = 0𝑝𝑁 = 0)
1510, 14syl6bir 253 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → ((𝐴𝑁) = 0 → 𝑁 = 0))
163, 15syl 17 . . . . . . 7 (𝜑 → ((𝐴𝑁) = 0 → 𝑁 = 0))
1716necon3d 2965 . . . . . 6 (𝜑 → (𝑁 ≠ 0 → (𝐴𝑁) ≠ 0))
189, 17mpd 15 . . . . 5 (𝜑 → (𝐴𝑁) ≠ 0)
198, 18absrpcld 15169 . . . 4 (𝜑 → (abs‘(𝐴𝑁)) ∈ ℝ+)
2019rphalfcld 12793 . . 3 (𝜑 → ((abs‘(𝐴𝑁)) / 2) ∈ ℝ+)
21 2fveq3 6788 . . . . 5 (𝑛 = 𝑘 → (abs‘(𝐴𝑛)) = (abs‘(𝐴𝑘)))
2221cbvsumv 15417 . . . 4 Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑛)) = Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘))
2322oveq1i 7294 . . 3 𝑛 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑛)) / ((abs‘(𝐴𝑁)) / 2)) = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / ((abs‘(𝐴𝑁)) / 2))
241, 2, 3, 4, 20, 23ftalem1 26231 . 2 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))))
25 ftalem2.5 . . . . . 6 𝑈 = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1))
26 ftalem2.6 . . . . . . . . 9 𝑇 = ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2))
27 plyf 25368 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
283, 27syl 17 . . . . . . . . . . . 12 (𝜑𝐹:ℂ⟶ℂ)
29 0cn 10976 . . . . . . . . . . . 12 0 ∈ ℂ
30 ffvelrn 6968 . . . . . . . . . . . 12 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
3128, 29, 30sylancl 586 . . . . . . . . . . 11 (𝜑 → (𝐹‘0) ∈ ℂ)
3231abscld 15157 . . . . . . . . . 10 (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ)
3332, 20rerpdivcld 12812 . . . . . . . . 9 (𝜑 → ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2)) ∈ ℝ)
3426, 33eqeltrid 2844 . . . . . . . 8 (𝜑𝑇 ∈ ℝ)
3534adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → 𝑇 ∈ ℝ)
36 simpr 485 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℝ)
37 1re 10984 . . . . . . . 8 1 ∈ ℝ
38 ifcl 4505 . . . . . . . 8 ((𝑠 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ)
3936, 37, 38sylancl 586 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ)
4035, 39ifcld 4506 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)) ∈ ℝ)
4125, 40eqeltrid 2844 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 𝑈 ∈ ℝ)
42 0red 10987 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 0 ∈ ℝ)
43 1red 10985 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
44 0lt1 11506 . . . . . . 7 0 < 1
4544a1i 11 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 0 < 1)
46 max1 12928 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑠, 𝑠, 1))
4737, 36, 46sylancr 587 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑠, 𝑠, 1))
48 max1 12928 . . . . . . . . 9 ((if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ ∧ 𝑇 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
4939, 35, 48syl2anc 584 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
5049, 25breqtrrdi 5117 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑈)
5143, 39, 41, 47, 50letrd 11141 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 1 ≤ 𝑈)
5242, 43, 41, 45, 51ltletrd 11144 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 0 < 𝑈)
5341, 52elrpd 12778 . . . 4 ((𝜑𝑠 ∈ ℝ) → 𝑈 ∈ ℝ+)
54 max2 12930 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → 𝑠 ≤ if(1 ≤ 𝑠, 𝑠, 1))
5537, 36, 54sylancr 587 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → 𝑠 ≤ if(1 ≤ 𝑠, 𝑠, 1))
5636, 39, 41, 55, 50letrd 11141 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → 𝑠𝑈)
5756adantr 481 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → 𝑠𝑈)
58 abscl 14999 . . . . . . . . 9 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
59 lelttr 11074 . . . . . . . . 9 ((𝑠 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (abs‘𝑥) ∈ ℝ) → ((𝑠𝑈𝑈 < (abs‘𝑥)) → 𝑠 < (abs‘𝑥)))
6036, 41, 58, 59syl2an3an 1421 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑠𝑈𝑈 < (abs‘𝑥)) → 𝑠 < (abs‘𝑥)))
6157, 60mpand 692 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → (𝑈 < (abs‘𝑥) → 𝑠 < (abs‘𝑥)))
6261imim1d 82 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → (𝑈 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))))
6328ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝐹:ℂ⟶ℂ)
64 simprl 768 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑥 ∈ ℂ)
6563, 64ffvelrnd 6971 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (𝐹𝑥) ∈ ℂ)
668ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (𝐴𝑁) ∈ ℂ)
677ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑁 ∈ ℕ0)
6864, 67expcld 13873 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (𝑥𝑁) ∈ ℂ)
6966, 68mulcld 11004 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((𝐴𝑁) · (𝑥𝑁)) ∈ ℂ)
7065, 69subcld 11341 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))) ∈ ℂ)
7170abscld 15157 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) ∈ ℝ)
7269abscld 15157 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) ∈ ℝ)
7372rehalfcld 12229 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℝ)
7471, 73, 72ltsub2d 11594 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ↔ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))))
7566, 68absmuld 15175 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) = ((abs‘(𝐴𝑁)) · (abs‘(𝑥𝑁))))
7664, 67absexpd 15173 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝑥𝑁)) = ((abs‘𝑥)↑𝑁))
7776oveq2d 7300 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐴𝑁)) · (abs‘(𝑥𝑁))) = ((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)))
7875, 77eqtrd 2779 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) = ((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)))
7978oveq1d 7299 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) = (((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)) / 2))
8066abscld 15157 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐴𝑁)) ∈ ℝ)
8180recnd 11012 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐴𝑁)) ∈ ℂ)
8258ad2antrl 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘𝑥) ∈ ℝ)
8382, 67reexpcld 13890 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) ∈ ℝ)
8483recnd 11012 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) ∈ ℂ)
85 2cnd 12060 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 2 ∈ ℂ)
86 2ne0 12086 . . . . . . . . . . . . . . 15 2 ≠ 0
8786a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 2 ≠ 0)
8881, 84, 85, 87div23d 11797 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)) / 2) = (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
8979, 88eqtrd 2779 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) = (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
9089breq2d 5087 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ↔ (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))))
9172recnd 11012 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) ∈ ℂ)
92912halvesd 12228 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) + ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = (abs‘((𝐴𝑁) · (𝑥𝑁))))
9392oveq1d 7299 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) + ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)))
9473recnd 11012 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℂ)
9594, 94pncand 11342 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) + ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2))
9693, 95eqtr3d 2781 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2))
9796breq1d 5085 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ↔ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))))
9874, 90, 973bitr3d 309 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) ↔ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))))
9969, 65subcld 11341 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)) ∈ ℂ)
10069, 99abs2difd 15178 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))) ≤ (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))))
10169, 65abssubd 15174 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥))) = (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))
102101oveq2d 7300 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))))
10369, 65nncand 11346 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((𝐴𝑁) · (𝑥𝑁)) − (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥))) = (𝐹𝑥))
104103fveq2d 6787 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))) = (abs‘(𝐹𝑥)))
105100, 102, 1043brtr3d 5106 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ≤ (abs‘(𝐹𝑥)))
10672, 71resubcld 11412 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∈ ℝ)
10765abscld 15157 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹𝑥)) ∈ ℝ)
108 ltletr 11076 . . . . . . . . . . . 12 ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℝ ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∈ ℝ ∧ (abs‘(𝐹𝑥)) ∈ ℝ) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ≤ (abs‘(𝐹𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
10973, 106, 107, 108syl3anc 1370 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ≤ (abs‘(𝐹𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
110105, 109mpan2d 691 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
11198, 110sylbid 239 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
11232ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) ∈ ℝ)
11320ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐴𝑁)) / 2) ∈ ℝ+)
114113rpred 12781 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐴𝑁)) / 2) ∈ ℝ)
115114, 82remulcld 11014 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)) ∈ ℝ)
11689, 73eqeltrrd 2841 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) ∈ ℝ)
11735adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑇 ∈ ℝ)
11841adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑈 ∈ ℝ)
119 max2 12930 . . . . . . . . . . . . . . . . . 18 ((if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ ∧ 𝑇 ∈ ℝ) → 𝑇 ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
12039, 35, 119syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ ℝ) → 𝑇 ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
121120, 25breqtrrdi 5117 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ ℝ) → 𝑇𝑈)
122121adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑇𝑈)
123 simprr 770 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑈 < (abs‘𝑥))
124117, 118, 82, 122, 123lelttrd 11142 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑇 < (abs‘𝑥))
12526, 124eqbrtrrid 5111 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2)) < (abs‘𝑥))
126112, 82, 113ltdivmuld 12832 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2)) < (abs‘𝑥) ↔ (abs‘(𝐹‘0)) < (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥))))
127125, 126mpbid 231 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) < (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)))
12882recnd 11012 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘𝑥) ∈ ℂ)
129128exp1d 13868 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑1) = (abs‘𝑥))
130 1red 10985 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 ∈ ℝ)
13151adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 ≤ 𝑈)
132130, 118, 82, 131, 123lelttrd 11142 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 < (abs‘𝑥))
133130, 82, 132ltled 11132 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 ≤ (abs‘𝑥))
1344ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑁 ∈ ℕ)
135 nnuz 12630 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
136134, 135eleqtrdi 2850 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑁 ∈ (ℤ‘1))
13782, 133, 136leexp2ad 13980 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑1) ≤ ((abs‘𝑥)↑𝑁))
138129, 137eqbrtrrd 5099 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘𝑥) ≤ ((abs‘𝑥)↑𝑁))
13982, 83, 113lemul2d 12825 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥) ≤ ((abs‘𝑥)↑𝑁) ↔ (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)) ≤ (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))))
140138, 139mpbid 231 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)) ≤ (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
141112, 115, 116, 127, 140ltletrd 11144 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
142141, 89breqtrrd 5103 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2))
143 lttr 11060 . . . . . . . . . . 11 (((abs‘(𝐹‘0)) ∈ ℝ ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℝ ∧ (abs‘(𝐹𝑥)) ∈ ℝ) → (((abs‘(𝐹‘0)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
144112, 73, 107, 143syl3anc 1370 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐹‘0)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
145142, 144mpand 692 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
146111, 145syld 47 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
147146expr 457 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → (𝑈 < (abs‘𝑥) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
148147a2d 29 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑈 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
14962, 148syld 47 . . . . 5 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
150149ralimdva 3109 . . . 4 ((𝜑𝑠 ∈ ℝ) → (∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → ∀𝑥 ∈ ℂ (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
151 breq1 5078 . . . . 5 (𝑟 = 𝑈 → (𝑟 < (abs‘𝑥) ↔ 𝑈 < (abs‘𝑥)))
152151rspceaimv 3566 . . . 4 ((𝑈 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))) → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
15353, 150, 152syl6an 681 . . 3 ((𝜑𝑠 ∈ ℝ) → (∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
154153rexlimdva 3214 . 2 (𝜑 → (∃𝑠 ∈ ℝ ∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
15524, 154mpd 15 1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2107  wne 2944  wral 3065  wrex 3066  ifcif 4460   class class class wbr 5075  wf 6433  cfv 6437  (class class class)co 7284  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885   < clt 11018  cle 11019  cmin 11214   / cdiv 11641  cn 11982  2c2 12037  0cn0 12242  cuz 12591  +crp 12739  ...cfz 13248  cexp 13791  abscabs 14954  Σcsu 15406  0𝑝c0p 24842  Polycply 25354  coeffccoe 25356  degcdgr 25357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-map 8626  df-pm 8627  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-n0 12243  df-z 12329  df-uz 12592  df-rp 12740  df-ico 13094  df-fz 13249  df-fzo 13392  df-fl 13521  df-seq 13731  df-exp 13792  df-hash 14054  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-clim 15206  df-rlim 15207  df-sum 15407  df-0p 24843  df-ply 25358  df-coe 25360  df-dgr 25361
This theorem is referenced by:  fta  26238
  Copyright terms: Public domain W3C validator