MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem2 Structured version   Visualization version   GIF version

Theorem ftalem2 27001
Description: Lemma for fta 27007. There exists some 𝑟 such that 𝐹 has magnitude greater than 𝐹(0) outside the closed ball B(0,r). (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem2.5 𝑈 = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1))
ftalem2.6 𝑇 = ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2))
Assertion
Ref Expression
ftalem2 (𝜑 → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
Distinct variable groups:   𝑠,𝑟,𝑥,𝐴   𝑁,𝑟,𝑠,𝑥   𝐹,𝑟,𝑠,𝑥   𝜑,𝑠,𝑥   𝑆,𝑠   𝑇,𝑟,𝑥   𝑈,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑟)   𝑆(𝑥,𝑟)   𝑇(𝑠)   𝑈(𝑠)

Proof of Theorem ftalem2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftalem.1 . . 3 𝐴 = (coeff‘𝐹)
2 ftalem.2 . . 3 𝑁 = (deg‘𝐹)
3 ftalem.3 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
4 ftalem.4 . . 3 (𝜑𝑁 ∈ ℕ)
51coef3 26154 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
63, 5syl 17 . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
74nnnn0d 12464 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
86, 7ffvelcdmd 7023 . . . . 5 (𝜑 → (𝐴𝑁) ∈ ℂ)
94nnne0d 12197 . . . . . 6 (𝜑𝑁 ≠ 0)
102, 1dgreq0 26188 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
11 fveq2 6826 . . . . . . . . . . 11 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
12 dgr0 26185 . . . . . . . . . . 11 (deg‘0𝑝) = 0
1311, 12eqtrdi 2780 . . . . . . . . . 10 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
142, 13eqtrid 2776 . . . . . . . . 9 (𝐹 = 0𝑝𝑁 = 0)
1510, 14biimtrrdi 254 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → ((𝐴𝑁) = 0 → 𝑁 = 0))
163, 15syl 17 . . . . . . 7 (𝜑 → ((𝐴𝑁) = 0 → 𝑁 = 0))
1716necon3d 2946 . . . . . 6 (𝜑 → (𝑁 ≠ 0 → (𝐴𝑁) ≠ 0))
189, 17mpd 15 . . . . 5 (𝜑 → (𝐴𝑁) ≠ 0)
198, 18absrpcld 15377 . . . 4 (𝜑 → (abs‘(𝐴𝑁)) ∈ ℝ+)
2019rphalfcld 12968 . . 3 (𝜑 → ((abs‘(𝐴𝑁)) / 2) ∈ ℝ+)
21 2fveq3 6831 . . . . 5 (𝑛 = 𝑘 → (abs‘(𝐴𝑛)) = (abs‘(𝐴𝑘)))
2221cbvsumv 15622 . . . 4 Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑛)) = Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘))
2322oveq1i 7363 . . 3 𝑛 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑛)) / ((abs‘(𝐴𝑁)) / 2)) = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / ((abs‘(𝐴𝑁)) / 2))
241, 2, 3, 4, 20, 23ftalem1 27000 . 2 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))))
25 ftalem2.5 . . . . . 6 𝑈 = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1))
26 ftalem2.6 . . . . . . . . 9 𝑇 = ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2))
27 plyf 26120 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
283, 27syl 17 . . . . . . . . . . . 12 (𝜑𝐹:ℂ⟶ℂ)
29 0cn 11126 . . . . . . . . . . . 12 0 ∈ ℂ
30 ffvelcdm 7019 . . . . . . . . . . . 12 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
3128, 29, 30sylancl 586 . . . . . . . . . . 11 (𝜑 → (𝐹‘0) ∈ ℂ)
3231abscld 15365 . . . . . . . . . 10 (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ)
3332, 20rerpdivcld 12987 . . . . . . . . 9 (𝜑 → ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2)) ∈ ℝ)
3426, 33eqeltrid 2832 . . . . . . . 8 (𝜑𝑇 ∈ ℝ)
3534adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → 𝑇 ∈ ℝ)
36 simpr 484 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℝ)
37 1re 11134 . . . . . . . 8 1 ∈ ℝ
38 ifcl 4524 . . . . . . . 8 ((𝑠 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ)
3936, 37, 38sylancl 586 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ)
4035, 39ifcld 4525 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)) ∈ ℝ)
4125, 40eqeltrid 2832 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 𝑈 ∈ ℝ)
42 0red 11137 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 0 ∈ ℝ)
43 1red 11135 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
44 0lt1 11661 . . . . . . 7 0 < 1
4544a1i 11 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 0 < 1)
46 max1 13106 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑠, 𝑠, 1))
4737, 36, 46sylancr 587 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑠, 𝑠, 1))
48 max1 13106 . . . . . . . . 9 ((if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ ∧ 𝑇 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
4939, 35, 48syl2anc 584 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
5049, 25breqtrrdi 5137 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑈)
5143, 39, 41, 47, 50letrd 11292 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 1 ≤ 𝑈)
5242, 43, 41, 45, 51ltletrd 11295 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 0 < 𝑈)
5341, 52elrpd 12953 . . . 4 ((𝜑𝑠 ∈ ℝ) → 𝑈 ∈ ℝ+)
54 max2 13108 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → 𝑠 ≤ if(1 ≤ 𝑠, 𝑠, 1))
5537, 36, 54sylancr 587 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → 𝑠 ≤ if(1 ≤ 𝑠, 𝑠, 1))
5636, 39, 41, 55, 50letrd 11292 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → 𝑠𝑈)
5756adantr 480 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → 𝑠𝑈)
58 abscl 15204 . . . . . . . . 9 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
59 lelttr 11225 . . . . . . . . 9 ((𝑠 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (abs‘𝑥) ∈ ℝ) → ((𝑠𝑈𝑈 < (abs‘𝑥)) → 𝑠 < (abs‘𝑥)))
6036, 41, 58, 59syl2an3an 1424 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑠𝑈𝑈 < (abs‘𝑥)) → 𝑠 < (abs‘𝑥)))
6157, 60mpand 695 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → (𝑈 < (abs‘𝑥) → 𝑠 < (abs‘𝑥)))
6261imim1d 82 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → (𝑈 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))))
6328ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝐹:ℂ⟶ℂ)
64 simprl 770 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑥 ∈ ℂ)
6563, 64ffvelcdmd 7023 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (𝐹𝑥) ∈ ℂ)
668ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (𝐴𝑁) ∈ ℂ)
677ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑁 ∈ ℕ0)
6864, 67expcld 14072 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (𝑥𝑁) ∈ ℂ)
6966, 68mulcld 11154 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((𝐴𝑁) · (𝑥𝑁)) ∈ ℂ)
7065, 69subcld 11494 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))) ∈ ℂ)
7170abscld 15365 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) ∈ ℝ)
7269abscld 15365 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) ∈ ℝ)
7372rehalfcld 12390 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℝ)
7471, 73, 72ltsub2d 11749 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ↔ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))))
7566, 68absmuld 15383 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) = ((abs‘(𝐴𝑁)) · (abs‘(𝑥𝑁))))
7664, 67absexpd 15381 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝑥𝑁)) = ((abs‘𝑥)↑𝑁))
7776oveq2d 7369 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐴𝑁)) · (abs‘(𝑥𝑁))) = ((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)))
7875, 77eqtrd 2764 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) = ((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)))
7978oveq1d 7368 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) = (((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)) / 2))
8066abscld 15365 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐴𝑁)) ∈ ℝ)
8180recnd 11162 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐴𝑁)) ∈ ℂ)
8258ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘𝑥) ∈ ℝ)
8382, 67reexpcld 14089 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) ∈ ℝ)
8483recnd 11162 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) ∈ ℂ)
85 2cnd 12225 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 2 ∈ ℂ)
86 2ne0 12251 . . . . . . . . . . . . . . 15 2 ≠ 0
8786a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 2 ≠ 0)
8881, 84, 85, 87div23d 11956 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)) / 2) = (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
8979, 88eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) = (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
9089breq2d 5107 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ↔ (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))))
9172recnd 11162 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) ∈ ℂ)
92912halvesd 12389 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) + ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = (abs‘((𝐴𝑁) · (𝑥𝑁))))
9392oveq1d 7368 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) + ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)))
9473recnd 11162 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℂ)
9594, 94pncand 11495 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) + ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2))
9693, 95eqtr3d 2766 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2))
9796breq1d 5105 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ↔ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))))
9874, 90, 973bitr3d 309 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) ↔ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))))
9969, 65subcld 11494 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)) ∈ ℂ)
10069, 99abs2difd 15386 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))) ≤ (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))))
10169, 65abssubd 15382 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥))) = (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))
102101oveq2d 7369 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))))
10369, 65nncand 11499 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((𝐴𝑁) · (𝑥𝑁)) − (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥))) = (𝐹𝑥))
104103fveq2d 6830 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))) = (abs‘(𝐹𝑥)))
105100, 102, 1043brtr3d 5126 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ≤ (abs‘(𝐹𝑥)))
10672, 71resubcld 11567 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∈ ℝ)
10765abscld 15365 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹𝑥)) ∈ ℝ)
108 ltletr 11227 . . . . . . . . . . . 12 ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℝ ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∈ ℝ ∧ (abs‘(𝐹𝑥)) ∈ ℝ) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ≤ (abs‘(𝐹𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
10973, 106, 107, 108syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ≤ (abs‘(𝐹𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
110105, 109mpan2d 694 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
11198, 110sylbid 240 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
11232ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) ∈ ℝ)
11320ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐴𝑁)) / 2) ∈ ℝ+)
114113rpred 12956 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐴𝑁)) / 2) ∈ ℝ)
115114, 82remulcld 11164 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)) ∈ ℝ)
11689, 73eqeltrrd 2829 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) ∈ ℝ)
11735adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑇 ∈ ℝ)
11841adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑈 ∈ ℝ)
119 max2 13108 . . . . . . . . . . . . . . . . . 18 ((if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ ∧ 𝑇 ∈ ℝ) → 𝑇 ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
12039, 35, 119syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ ℝ) → 𝑇 ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
121120, 25breqtrrdi 5137 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ ℝ) → 𝑇𝑈)
122121adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑇𝑈)
123 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑈 < (abs‘𝑥))
124117, 118, 82, 122, 123lelttrd 11293 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑇 < (abs‘𝑥))
12526, 124eqbrtrrid 5131 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2)) < (abs‘𝑥))
126112, 82, 113ltdivmuld 13007 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2)) < (abs‘𝑥) ↔ (abs‘(𝐹‘0)) < (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥))))
127125, 126mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) < (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)))
12882recnd 11162 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘𝑥) ∈ ℂ)
129128exp1d 14067 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑1) = (abs‘𝑥))
130 1red 11135 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 ∈ ℝ)
13151adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 ≤ 𝑈)
132130, 118, 82, 131, 123lelttrd 11293 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 < (abs‘𝑥))
133130, 82, 132ltled 11283 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 ≤ (abs‘𝑥))
1344ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑁 ∈ ℕ)
135 nnuz 12797 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
136134, 135eleqtrdi 2838 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑁 ∈ (ℤ‘1))
13782, 133, 136leexp2ad 14180 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑1) ≤ ((abs‘𝑥)↑𝑁))
138129, 137eqbrtrrd 5119 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘𝑥) ≤ ((abs‘𝑥)↑𝑁))
13982, 83, 113lemul2d 13000 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥) ≤ ((abs‘𝑥)↑𝑁) ↔ (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)) ≤ (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))))
140138, 139mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)) ≤ (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
141112, 115, 116, 127, 140ltletrd 11295 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
142141, 89breqtrrd 5123 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2))
143 lttr 11211 . . . . . . . . . . 11 (((abs‘(𝐹‘0)) ∈ ℝ ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℝ ∧ (abs‘(𝐹𝑥)) ∈ ℝ) → (((abs‘(𝐹‘0)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
144112, 73, 107, 143syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐹‘0)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
145142, 144mpand 695 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
146111, 145syld 47 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
147146expr 456 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → (𝑈 < (abs‘𝑥) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
148147a2d 29 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑈 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
14962, 148syld 47 . . . . 5 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
150149ralimdva 3141 . . . 4 ((𝜑𝑠 ∈ ℝ) → (∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → ∀𝑥 ∈ ℂ (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
151 breq1 5098 . . . . 5 (𝑟 = 𝑈 → (𝑟 < (abs‘𝑥) ↔ 𝑈 < (abs‘𝑥)))
152151rspceaimv 3585 . . . 4 ((𝑈 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))) → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
15353, 150, 152syl6an 684 . . 3 ((𝜑𝑠 ∈ ℝ) → (∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
154153rexlimdva 3130 . 2 (𝜑 → (∃𝑠 ∈ ℝ ∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
15524, 154mpd 15 1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ifcif 4478   class class class wbr 5095  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cle 11169  cmin 11366   / cdiv 11796  cn 12147  2c2 12202  0cn0 12403  cuz 12754  +crp 12912  ...cfz 13429  cexp 13987  abscabs 15160  Σcsu 15612  0𝑝c0p 25587  Polycply 26106  coeffccoe 26108  degcdgr 26109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-ico 13273  df-fz 13430  df-fzo 13577  df-fl 13715  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-clim 15414  df-rlim 15415  df-sum 15613  df-0p 25588  df-ply 26110  df-coe 26112  df-dgr 26113
This theorem is referenced by:  fta  27007
  Copyright terms: Public domain W3C validator