MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem2 Structured version   Visualization version   GIF version

Theorem ftalem2 25659
Description: Lemma for fta 25665. There exists some 𝑟 such that 𝐹 has magnitude greater than 𝐹(0) outside the closed ball B(0,r). (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem2.5 𝑈 = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1))
ftalem2.6 𝑇 = ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2))
Assertion
Ref Expression
ftalem2 (𝜑 → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
Distinct variable groups:   𝑠,𝑟,𝑥,𝐴   𝑁,𝑟,𝑠,𝑥   𝐹,𝑟,𝑠,𝑥   𝜑,𝑠,𝑥   𝑆,𝑠   𝑇,𝑟,𝑥   𝑈,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑟)   𝑆(𝑥,𝑟)   𝑇(𝑠)   𝑈(𝑠)

Proof of Theorem ftalem2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftalem.1 . . 3 𝐴 = (coeff‘𝐹)
2 ftalem.2 . . 3 𝑁 = (deg‘𝐹)
3 ftalem.3 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
4 ftalem.4 . . 3 (𝜑𝑁 ∈ ℕ)
51coef3 24829 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
63, 5syl 17 . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
74nnnn0d 11943 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
86, 7ffvelrnd 6829 . . . . 5 (𝜑 → (𝐴𝑁) ∈ ℂ)
94nnne0d 11675 . . . . . 6 (𝜑𝑁 ≠ 0)
102, 1dgreq0 24862 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
11 fveq2 6645 . . . . . . . . . . 11 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
12 dgr0 24859 . . . . . . . . . . 11 (deg‘0𝑝) = 0
1311, 12eqtrdi 2849 . . . . . . . . . 10 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
142, 13syl5eq 2845 . . . . . . . . 9 (𝐹 = 0𝑝𝑁 = 0)
1510, 14syl6bir 257 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → ((𝐴𝑁) = 0 → 𝑁 = 0))
163, 15syl 17 . . . . . . 7 (𝜑 → ((𝐴𝑁) = 0 → 𝑁 = 0))
1716necon3d 3008 . . . . . 6 (𝜑 → (𝑁 ≠ 0 → (𝐴𝑁) ≠ 0))
189, 17mpd 15 . . . . 5 (𝜑 → (𝐴𝑁) ≠ 0)
198, 18absrpcld 14800 . . . 4 (𝜑 → (abs‘(𝐴𝑁)) ∈ ℝ+)
2019rphalfcld 12431 . . 3 (𝜑 → ((abs‘(𝐴𝑁)) / 2) ∈ ℝ+)
21 2fveq3 6650 . . . . 5 (𝑛 = 𝑘 → (abs‘(𝐴𝑛)) = (abs‘(𝐴𝑘)))
2221cbvsumv 15045 . . . 4 Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑛)) = Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘))
2322oveq1i 7145 . . 3 𝑛 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑛)) / ((abs‘(𝐴𝑁)) / 2)) = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / ((abs‘(𝐴𝑁)) / 2))
241, 2, 3, 4, 20, 23ftalem1 25658 . 2 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))))
25 ftalem2.5 . . . . . 6 𝑈 = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1))
26 ftalem2.6 . . . . . . . . 9 𝑇 = ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2))
27 plyf 24795 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
283, 27syl 17 . . . . . . . . . . . 12 (𝜑𝐹:ℂ⟶ℂ)
29 0cn 10622 . . . . . . . . . . . 12 0 ∈ ℂ
30 ffvelrn 6826 . . . . . . . . . . . 12 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
3128, 29, 30sylancl 589 . . . . . . . . . . 11 (𝜑 → (𝐹‘0) ∈ ℂ)
3231abscld 14788 . . . . . . . . . 10 (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ)
3332, 20rerpdivcld 12450 . . . . . . . . 9 (𝜑 → ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2)) ∈ ℝ)
3426, 33eqeltrid 2894 . . . . . . . 8 (𝜑𝑇 ∈ ℝ)
3534adantr 484 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → 𝑇 ∈ ℝ)
36 simpr 488 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℝ)
37 1re 10630 . . . . . . . 8 1 ∈ ℝ
38 ifcl 4469 . . . . . . . 8 ((𝑠 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ)
3936, 37, 38sylancl 589 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ)
4035, 39ifcld 4470 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)) ∈ ℝ)
4125, 40eqeltrid 2894 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 𝑈 ∈ ℝ)
42 0red 10633 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 0 ∈ ℝ)
43 1red 10631 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
44 0lt1 11151 . . . . . . 7 0 < 1
4544a1i 11 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 0 < 1)
46 max1 12566 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑠, 𝑠, 1))
4737, 36, 46sylancr 590 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑠, 𝑠, 1))
48 max1 12566 . . . . . . . . 9 ((if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ ∧ 𝑇 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
4939, 35, 48syl2anc 587 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
5049, 25breqtrrdi 5072 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑈)
5143, 39, 41, 47, 50letrd 10786 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 1 ≤ 𝑈)
5242, 43, 41, 45, 51ltletrd 10789 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 0 < 𝑈)
5341, 52elrpd 12416 . . . 4 ((𝜑𝑠 ∈ ℝ) → 𝑈 ∈ ℝ+)
54 max2 12568 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → 𝑠 ≤ if(1 ≤ 𝑠, 𝑠, 1))
5537, 36, 54sylancr 590 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → 𝑠 ≤ if(1 ≤ 𝑠, 𝑠, 1))
5636, 39, 41, 55, 50letrd 10786 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → 𝑠𝑈)
5756adantr 484 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → 𝑠𝑈)
58 abscl 14630 . . . . . . . . 9 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
59 lelttr 10720 . . . . . . . . 9 ((𝑠 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (abs‘𝑥) ∈ ℝ) → ((𝑠𝑈𝑈 < (abs‘𝑥)) → 𝑠 < (abs‘𝑥)))
6036, 41, 58, 59syl2an3an 1419 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑠𝑈𝑈 < (abs‘𝑥)) → 𝑠 < (abs‘𝑥)))
6157, 60mpand 694 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → (𝑈 < (abs‘𝑥) → 𝑠 < (abs‘𝑥)))
6261imim1d 82 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → (𝑈 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))))
6328ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝐹:ℂ⟶ℂ)
64 simprl 770 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑥 ∈ ℂ)
6563, 64ffvelrnd 6829 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (𝐹𝑥) ∈ ℂ)
668ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (𝐴𝑁) ∈ ℂ)
677ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑁 ∈ ℕ0)
6864, 67expcld 13506 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (𝑥𝑁) ∈ ℂ)
6966, 68mulcld 10650 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((𝐴𝑁) · (𝑥𝑁)) ∈ ℂ)
7065, 69subcld 10986 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))) ∈ ℂ)
7170abscld 14788 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) ∈ ℝ)
7269abscld 14788 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) ∈ ℝ)
7372rehalfcld 11872 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℝ)
7471, 73, 72ltsub2d 11239 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ↔ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))))
7566, 68absmuld 14806 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) = ((abs‘(𝐴𝑁)) · (abs‘(𝑥𝑁))))
7664, 67absexpd 14804 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝑥𝑁)) = ((abs‘𝑥)↑𝑁))
7776oveq2d 7151 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐴𝑁)) · (abs‘(𝑥𝑁))) = ((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)))
7875, 77eqtrd 2833 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) = ((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)))
7978oveq1d 7150 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) = (((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)) / 2))
8066abscld 14788 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐴𝑁)) ∈ ℝ)
8180recnd 10658 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐴𝑁)) ∈ ℂ)
8258ad2antrl 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘𝑥) ∈ ℝ)
8382, 67reexpcld 13523 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) ∈ ℝ)
8483recnd 10658 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) ∈ ℂ)
85 2cnd 11703 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 2 ∈ ℂ)
86 2ne0 11729 . . . . . . . . . . . . . . 15 2 ≠ 0
8786a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 2 ≠ 0)
8881, 84, 85, 87div23d 11442 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)) / 2) = (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
8979, 88eqtrd 2833 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) = (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
9089breq2d 5042 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ↔ (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))))
9172recnd 10658 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) ∈ ℂ)
92912halvesd 11871 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) + ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = (abs‘((𝐴𝑁) · (𝑥𝑁))))
9392oveq1d 7150 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) + ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)))
9473recnd 10658 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℂ)
9594, 94pncand 10987 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) + ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2))
9693, 95eqtr3d 2835 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2))
9796breq1d 5040 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ↔ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))))
9874, 90, 973bitr3d 312 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) ↔ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))))
9969, 65subcld 10986 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)) ∈ ℂ)
10069, 99abs2difd 14809 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))) ≤ (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))))
10169, 65abssubd 14805 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥))) = (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))
102101oveq2d 7151 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))))
10369, 65nncand 10991 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((𝐴𝑁) · (𝑥𝑁)) − (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥))) = (𝐹𝑥))
104103fveq2d 6649 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))) = (abs‘(𝐹𝑥)))
105100, 102, 1043brtr3d 5061 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ≤ (abs‘(𝐹𝑥)))
10672, 71resubcld 11057 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∈ ℝ)
10765abscld 14788 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹𝑥)) ∈ ℝ)
108 ltletr 10721 . . . . . . . . . . . 12 ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℝ ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∈ ℝ ∧ (abs‘(𝐹𝑥)) ∈ ℝ) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ≤ (abs‘(𝐹𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
10973, 106, 107, 108syl3anc 1368 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ≤ (abs‘(𝐹𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
110105, 109mpan2d 693 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
11198, 110sylbid 243 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
11232ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) ∈ ℝ)
11320ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐴𝑁)) / 2) ∈ ℝ+)
114113rpred 12419 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐴𝑁)) / 2) ∈ ℝ)
115114, 82remulcld 10660 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)) ∈ ℝ)
11689, 73eqeltrrd 2891 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) ∈ ℝ)
11735adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑇 ∈ ℝ)
11841adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑈 ∈ ℝ)
119 max2 12568 . . . . . . . . . . . . . . . . . 18 ((if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ ∧ 𝑇 ∈ ℝ) → 𝑇 ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
12039, 35, 119syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ ℝ) → 𝑇 ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
121120, 25breqtrrdi 5072 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ ℝ) → 𝑇𝑈)
122121adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑇𝑈)
123 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑈 < (abs‘𝑥))
124117, 118, 82, 122, 123lelttrd 10787 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑇 < (abs‘𝑥))
12526, 124eqbrtrrid 5066 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2)) < (abs‘𝑥))
126112, 82, 113ltdivmuld 12470 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2)) < (abs‘𝑥) ↔ (abs‘(𝐹‘0)) < (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥))))
127125, 126mpbid 235 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) < (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)))
12882recnd 10658 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘𝑥) ∈ ℂ)
129128exp1d 13501 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑1) = (abs‘𝑥))
130 1red 10631 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 ∈ ℝ)
13151adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 ≤ 𝑈)
132130, 118, 82, 131, 123lelttrd 10787 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 < (abs‘𝑥))
133130, 82, 132ltled 10777 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 ≤ (abs‘𝑥))
1344ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑁 ∈ ℕ)
135 nnuz 12269 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
136134, 135eleqtrdi 2900 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑁 ∈ (ℤ‘1))
13782, 133, 136leexp2ad 13613 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑1) ≤ ((abs‘𝑥)↑𝑁))
138129, 137eqbrtrrd 5054 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘𝑥) ≤ ((abs‘𝑥)↑𝑁))
13982, 83, 113lemul2d 12463 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥) ≤ ((abs‘𝑥)↑𝑁) ↔ (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)) ≤ (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))))
140138, 139mpbid 235 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)) ≤ (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
141112, 115, 116, 127, 140ltletrd 10789 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
142141, 89breqtrrd 5058 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2))
143 lttr 10706 . . . . . . . . . . 11 (((abs‘(𝐹‘0)) ∈ ℝ ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℝ ∧ (abs‘(𝐹𝑥)) ∈ ℝ) → (((abs‘(𝐹‘0)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
144112, 73, 107, 143syl3anc 1368 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐹‘0)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
145142, 144mpand 694 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
146111, 145syld 47 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
147146expr 460 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → (𝑈 < (abs‘𝑥) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
148147a2d 29 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑈 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
14962, 148syld 47 . . . . 5 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
150149ralimdva 3144 . . . 4 ((𝜑𝑠 ∈ ℝ) → (∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → ∀𝑥 ∈ ℂ (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
151 breq1 5033 . . . . 5 (𝑟 = 𝑈 → (𝑟 < (abs‘𝑥) ↔ 𝑈 < (abs‘𝑥)))
152151rspceaimv 3576 . . . 4 ((𝑈 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))) → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
15353, 150, 152syl6an 683 . . 3 ((𝜑𝑠 ∈ ℝ) → (∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
154153rexlimdva 3243 . 2 (𝜑 → (∃𝑠 ∈ ℝ ∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
15524, 154mpd 15 1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  ifcif 4425   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cuz 12231  +crp 12377  ...cfz 12885  cexp 13425  abscabs 14585  Σcsu 15034  0𝑝c0p 24273  Polycply 24781  coeffccoe 24783  degcdgr 24784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-0p 24274  df-ply 24785  df-coe 24787  df-dgr 24788
This theorem is referenced by:  fta  25665
  Copyright terms: Public domain W3C validator