![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmval | Structured version Visualization version GIF version |
Description: Subgroup sum value (for a left module or left vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmval.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmval.a | ⊢ + = (+g‘𝐺) |
lsmval.p | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmval | ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgrcl 19047 | . 2 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
2 | lsmval.v | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 2 | subgss 19043 | . 2 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ 𝐵) |
4 | 2 | subgss 19043 | . 2 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ 𝐵) |
5 | lsmval.a | . . 3 ⊢ + = (+g‘𝐺) | |
6 | lsmval.p | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
7 | 2, 5, 6 | lsmvalx 19548 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
8 | 1, 3, 4, 7 | syl2an3an 1420 | 1 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ⊆ wss 3947 ran crn 5676 ‘cfv 6542 (class class class)co 7411 ∈ cmpo 7413 Basecbs 17148 +gcplusg 17201 Grpcgrp 18855 SubGrpcsubg 19036 LSSumclsm 19543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-subg 19039 df-lsm 19545 |
This theorem is referenced by: lsmass 19578 |
Copyright terms: Public domain | W3C validator |