MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmval Structured version   Visualization version   GIF version

Theorem lsmval 19557
Description: Subgroup sum value (for a left module or left vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmval.v 𝐵 = (Base‘𝐺)
lsmval.a + = (+g𝐺)
lsmval.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmval ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem lsmval
StepHypRef Expression
1 subgrcl 19047 . 2 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2 lsmval.v . . 3 𝐵 = (Base‘𝐺)
32subgss 19043 . 2 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇𝐵)
42subgss 19043 . 2 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
5 lsmval.a . . 3 + = (+g𝐺)
6 lsmval.p . . 3 = (LSSum‘𝐺)
72, 5, 6lsmvalx 19548 . 2 ((𝐺 ∈ Grp ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
81, 3, 4, 7syl2an3an 1420 1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  wss 3947  ran crn 5676  cfv 6542  (class class class)co 7411  cmpo 7413  Basecbs 17148  +gcplusg 17201  Grpcgrp 18855  SubGrpcsubg 19036  LSSumclsm 19543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-subg 19039  df-lsm 19545
This theorem is referenced by:  lsmass  19578
  Copyright terms: Public domain W3C validator