Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmval Structured version   Visualization version   GIF version

Theorem lsmval 18764
 Description: Subgroup sum value (for a left module or left vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmval.v 𝐵 = (Base‘𝐺)
lsmval.a + = (+g𝐺)
lsmval.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmval ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem lsmval
StepHypRef Expression
1 subgrcl 18275 . 2 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2 lsmval.v . . 3 𝐵 = (Base‘𝐺)
32subgss 18271 . 2 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇𝐵)
42subgss 18271 . 2 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
5 lsmval.a . . 3 + = (+g𝐺)
6 lsmval.p . . 3 = (LSSum‘𝐺)
72, 5, 6lsmvalx 18755 . 2 ((𝐺 ∈ Grp ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
81, 3, 4, 7syl2an3an 1419 1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2114   ⊆ wss 3908  ran crn 5533  ‘cfv 6334  (class class class)co 7140   ∈ cmpo 7142  Basecbs 16474  +gcplusg 16556  Grpcgrp 18094  SubGrpcsubg 18264  LSSumclsm 18750 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7675  df-2nd 7676  df-subg 18267  df-lsm 18752 This theorem is referenced by:  lsmidmOLD  18780  lsmass  18786
 Copyright terms: Public domain W3C validator