MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmval Structured version   Visualization version   GIF version

Theorem lsmval 19564
Description: Subgroup sum value (for a left module or left vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmval.v 𝐵 = (Base‘𝐺)
lsmval.a + = (+g𝐺)
lsmval.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmval ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem lsmval
StepHypRef Expression
1 subgrcl 19048 . 2 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2 lsmval.v . . 3 𝐵 = (Base‘𝐺)
32subgss 19044 . 2 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇𝐵)
42subgss 19044 . 2 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
5 lsmval.a . . 3 + = (+g𝐺)
6 lsmval.p . . 3 = (LSSum‘𝐺)
72, 5, 6lsmvalx 19555 . 2 ((𝐺 ∈ Grp ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
81, 3, 4, 7syl2an3an 1424 1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wss 3898  ran crn 5622  cfv 6488  (class class class)co 7354  cmpo 7356  Basecbs 17124  +gcplusg 17165  Grpcgrp 18850  SubGrpcsubg 19037  LSSumclsm 19550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-1st 7929  df-2nd 7930  df-subg 19040  df-lsm 19552
This theorem is referenced by:  lsmass  19585
  Copyright terms: Public domain W3C validator