MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv Structured version   Visualization version   GIF version

Theorem fldiv 13911
Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by NM, 16-Aug-2008.)
Assertion
Ref Expression
fldiv ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))

Proof of Theorem fldiv
StepHypRef Expression
1 eqid 2740 . . . . . . . . 9 (⌊‘𝐴) = (⌊‘𝐴)
2 eqid 2740 . . . . . . . . 9 (𝐴 − (⌊‘𝐴)) = (𝐴 − (⌊‘𝐴))
31, 2intfrac2 13909 . . . . . . . 8 (𝐴 ∈ ℝ → (0 ≤ (𝐴 − (⌊‘𝐴)) ∧ (𝐴 − (⌊‘𝐴)) < 1 ∧ 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴)))))
43simp3d 1144 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))))
54adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))))
65oveq1d 7463 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁))
7 reflcl 13847 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
87recnd 11318 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
9 resubcl 11600 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
107, 9mpdan 686 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
1110recnd 11318 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) ∈ ℂ)
12 nncn 12301 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
13 nnne0 12327 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1412, 13jca 511 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
15 divdir 11974 . . . . . 6 (((⌊‘𝐴) ∈ ℂ ∧ (𝐴 − (⌊‘𝐴)) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
168, 11, 14, 15syl2an3an 1422 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
176, 16eqtrd 2780 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
18 flcl 13846 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
19 eqid 2740 . . . . . . . 8 (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘((⌊‘𝐴) / 𝑁))
20 eqid 2740 . . . . . . . 8 (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) = (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))
2119, 20intfracq 13910 . . . . . . 7 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∧ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))))
2221simp3d 1144 . . . . . 6 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))))
2318, 22sylan 579 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))))
2423oveq1d 7463 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = (((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
257adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘𝐴) ∈ ℝ)
26 nnre 12300 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2726adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
2813adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
2925, 27, 28redivcld 12122 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) ∈ ℝ)
30 reflcl 13847 . . . . . . 7 (((⌊‘𝐴) / 𝑁) ∈ ℝ → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℝ)
3129, 30syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℝ)
3231recnd 11318 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℂ)
3329, 31resubcld 11718 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ)
3433recnd 11318 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℂ)
3510adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
3635, 27, 28redivcld 12122 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ)
3736recnd 11318 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℂ)
3832, 34, 37addassd 11312 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))))
3917, 24, 383eqtrd 2784 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))))
4039fveq2d 6924 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝐴 / 𝑁)) = (⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))))
4121simp1d 1142 . . . . 5 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))
4218, 41sylan 579 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))
43 fracge0 13855 . . . . . 6 (𝐴 ∈ ℝ → 0 ≤ (𝐴 − (⌊‘𝐴)))
4410, 43jca 511 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 − (⌊‘𝐴))))
45 nngt0 12324 . . . . . 6 (𝑁 ∈ ℕ → 0 < 𝑁)
4626, 45jca 511 . . . . 5 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
47 divge0 12164 . . . . 5 ((((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 − (⌊‘𝐴))) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝐴 − (⌊‘𝐴)) / 𝑁))
4844, 46, 47syl2an 595 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤ ((𝐴 − (⌊‘𝐴)) / 𝑁))
4933, 36, 42, 48addge0d 11866 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
50 peano2rem 11603 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
5126, 50syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
5251, 26, 13redivcld 12122 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) ∈ ℝ)
53 nnrecre 12335 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
5452, 53jca 511 . . . . . . 7 (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ))
5554adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ))
5633, 36, 55jca31 514 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ) ∧ (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ)))
5721simp2d 1143 . . . . . . 7 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁))
5818, 57sylan 579 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁))
59 fraclt1 13853 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) < 1)
6059adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) < 1)
61 1re 11290 . . . . . . . . 9 1 ∈ ℝ
62 ltdiv1 12159 . . . . . . . . 9 (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
6361, 62mp3an2 1449 . . . . . . . 8 (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
6410, 46, 63syl2an 595 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
6560, 64mpbid 232 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁))
6658, 65jca 511 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
67 leltadd 11774 . . . . 5 ((((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ) ∧ (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ)) → (((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < (((𝑁 − 1) / 𝑁) + (1 / 𝑁))))
6856, 66, 67sylc 65 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
69 ax-1cn 11242 . . . . . . . 8 1 ∈ ℂ
70 npcan 11545 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
7112, 69, 70sylancl 585 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
7271oveq1d 7463 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (𝑁 / 𝑁))
7351recnd 11318 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
74 divdir 11974 . . . . . . . 8 (((𝑁 − 1) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
7569, 74mp3an2 1449 . . . . . . 7 (((𝑁 − 1) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
7673, 12, 13, 75syl12anc 836 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
7712, 13dividd 12068 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 / 𝑁) = 1)
7872, 76, 773eqtr3d 2788 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1)
7978adantl 481 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1)
8068, 79breqtrd 5192 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)
8129flcld 13849 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ)
8233, 36readdcld 11319 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℝ)
83 flbi2 13868 . . . 4 (((⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℝ) → ((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)))
8481, 82, 83syl2anc 583 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)))
8549, 80, 84mpbir2and 712 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)))
8640, 85eqtr2d 2781 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  cz 12639  cfl 13841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fl 13843
This theorem is referenced by:  fldiv2  13912  modmulnn  13940  digit2  14285  bitsp1  16477
  Copyright terms: Public domain W3C validator