Proof of Theorem fldiv
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2735 |
. . . . . . . . 9
⊢
(⌊‘𝐴) =
(⌊‘𝐴) |
| 2 | | eqid 2735 |
. . . . . . . . 9
⊢ (𝐴 − (⌊‘𝐴)) = (𝐴 − (⌊‘𝐴)) |
| 3 | 1, 2 | intfrac2 13875 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → (0 ≤
(𝐴 −
(⌊‘𝐴)) ∧
(𝐴 −
(⌊‘𝐴)) < 1
∧ 𝐴 =
((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))))) |
| 4 | 3 | simp3d 1144 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴)))) |
| 5 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴)))) |
| 6 | 5 | oveq1d 7420 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁)) |
| 7 | | reflcl 13813 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ →
(⌊‘𝐴) ∈
ℝ) |
| 8 | 7 | recnd 11263 |
. . . . . 6
⊢ (𝐴 ∈ ℝ →
(⌊‘𝐴) ∈
ℂ) |
| 9 | | resubcl 11547 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧
(⌊‘𝐴) ∈
ℝ) → (𝐴 −
(⌊‘𝐴)) ∈
ℝ) |
| 10 | 7, 9 | mpdan 687 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) ∈
ℝ) |
| 11 | 10 | recnd 11263 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) ∈
ℂ) |
| 12 | | nncn 12248 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 13 | | nnne0 12274 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
| 14 | 12, 13 | jca 511 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) |
| 15 | | divdir 11921 |
. . . . . 6
⊢
(((⌊‘𝐴)
∈ ℂ ∧ (𝐴
− (⌊‘𝐴))
∈ ℂ ∧ (𝑁
∈ ℂ ∧ 𝑁 ≠
0)) → (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁))) |
| 16 | 8, 11, 14, 15 | syl2an3an 1424 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
(((⌊‘𝐴) +
(𝐴 −
(⌊‘𝐴))) / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁))) |
| 17 | 6, 16 | eqtrd 2770 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁))) |
| 18 | | flcl 13812 |
. . . . . 6
⊢ (𝐴 ∈ ℝ →
(⌊‘𝐴) ∈
ℤ) |
| 19 | | eqid 2735 |
. . . . . . . 8
⊢
(⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘((⌊‘𝐴) / 𝑁)) |
| 20 | | eqid 2735 |
. . . . . . . 8
⊢
(((⌊‘𝐴)
/ 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) = (((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) |
| 21 | 19, 20 | intfracq 13876 |
. . . . . . 7
⊢
(((⌊‘𝐴)
∈ ℤ ∧ 𝑁
∈ ℕ) → (0 ≤ (((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) ∧ (((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁)))))) |
| 22 | 21 | simp3d 1144 |
. . . . . 6
⊢
(((⌊‘𝐴)
∈ ℤ ∧ 𝑁
∈ ℕ) → ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))))) |
| 23 | 18, 22 | sylan 580 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
((⌊‘𝐴) / 𝑁) =
((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))))) |
| 24 | 23 | oveq1d 7420 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
(((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = (((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))) |
| 25 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
(⌊‘𝐴) ∈
ℝ) |
| 26 | | nnre 12247 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
| 27 | 26 | adantl 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℝ) |
| 28 | 13 | adantl 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0) |
| 29 | 25, 27, 28 | redivcld 12069 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
((⌊‘𝐴) / 𝑁) ∈
ℝ) |
| 30 | | reflcl 13813 |
. . . . . . 7
⊢
(((⌊‘𝐴)
/ 𝑁) ∈ ℝ →
(⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℝ) |
| 31 | 29, 30 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
(⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℝ) |
| 32 | 31 | recnd 11263 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
(⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℂ) |
| 33 | 29, 31 | resubcld 11665 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
(((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ) |
| 34 | 33 | recnd 11263 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
(((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℂ) |
| 35 | 10 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) ∈
ℝ) |
| 36 | 35, 27, 28 | redivcld 12069 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ) |
| 37 | 36 | recnd 11263 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℂ) |
| 38 | 32, 34, 37 | addassd 11257 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
(((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) |
| 39 | 17, 24, 38 | 3eqtrd 2774 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) |
| 40 | 39 | fveq2d 6880 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
(⌊‘(𝐴 / 𝑁)) =
(⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))))) |
| 41 | 21 | simp1d 1142 |
. . . . 5
⊢
(((⌊‘𝐴)
∈ ℤ ∧ 𝑁
∈ ℕ) → 0 ≤ (((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁)))) |
| 42 | 18, 41 | sylan 580 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤
(((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁)))) |
| 43 | | fracge0 13821 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → 0 ≤
(𝐴 −
(⌊‘𝐴))) |
| 44 | 10, 43 | jca 511 |
. . . . 5
⊢ (𝐴 ∈ ℝ → ((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 0 ≤
(𝐴 −
(⌊‘𝐴)))) |
| 45 | | nngt0 12271 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 0 <
𝑁) |
| 46 | 26, 45 | jca 511 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 <
𝑁)) |
| 47 | | divge0 12111 |
. . . . 5
⊢ ((((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 0 ≤
(𝐴 −
(⌊‘𝐴))) ∧
(𝑁 ∈ ℝ ∧ 0
< 𝑁)) → 0 ≤
((𝐴 −
(⌊‘𝐴)) / 𝑁)) |
| 48 | 44, 46, 47 | syl2an 596 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤
((𝐴 −
(⌊‘𝐴)) / 𝑁)) |
| 49 | 33, 36, 42, 48 | addge0d 11813 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤
((((⌊‘𝐴) /
𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))) |
| 50 | | peano2rem 11550 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈
ℝ) |
| 51 | 26, 50 | syl 17 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℝ) |
| 52 | 51, 26, 13 | redivcld 12069 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) ∈ ℝ) |
| 53 | | nnrecre 12282 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → (1 /
𝑁) ∈
ℝ) |
| 54 | 52, 53 | jca 511 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈
ℝ)) |
| 55 | 54 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈
ℝ)) |
| 56 | 33, 36, 55 | jca31 514 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
(((((⌊‘𝐴) /
𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ) ∧ (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈
ℝ))) |
| 57 | 21 | simp2d 1143 |
. . . . . . 7
⊢
(((⌊‘𝐴)
∈ ℤ ∧ 𝑁
∈ ℕ) → (((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁)) |
| 58 | 18, 57 | sylan 580 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
(((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁)) |
| 59 | | fraclt1 13819 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) < 1) |
| 60 | 59 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) < 1) |
| 61 | | 1re 11235 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
| 62 | | ltdiv1 12106 |
. . . . . . . . 9
⊢ (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 1 ∈
ℝ ∧ (𝑁 ∈
ℝ ∧ 0 < 𝑁))
→ ((𝐴 −
(⌊‘𝐴)) < 1
↔ ((𝐴 −
(⌊‘𝐴)) / 𝑁) < (1 / 𝑁))) |
| 63 | 61, 62 | mp3an2 1451 |
. . . . . . . 8
⊢ (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 <
𝑁)) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁))) |
| 64 | 10, 46, 63 | syl2an 596 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁))) |
| 65 | 60, 64 | mpbid 232 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)) |
| 66 | 58, 65 | jca 511 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
((((⌊‘𝐴) /
𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁))) |
| 67 | | leltadd 11721 |
. . . . 5
⊢
((((((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ) ∧ (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ)) →
(((((⌊‘𝐴) /
𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)) → ((((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))) |
| 68 | 56, 66, 67 | sylc 65 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
((((⌊‘𝐴) /
𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < (((𝑁 − 1) / 𝑁) + (1 / 𝑁))) |
| 69 | | ax-1cn 11187 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
| 70 | | npcan 11491 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) |
| 71 | 12, 69, 70 | sylancl 586 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁) |
| 72 | 71 | oveq1d 7420 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (𝑁 / 𝑁)) |
| 73 | 51 | recnd 11263 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℂ) |
| 74 | | divdir 11921 |
. . . . . . . 8
⊢ (((𝑁 − 1) ∈ ℂ ∧
1 ∈ ℂ ∧ (𝑁
∈ ℂ ∧ 𝑁 ≠
0)) → (((𝑁 − 1)
+ 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁))) |
| 75 | 69, 74 | mp3an2 1451 |
. . . . . . 7
⊢ (((𝑁 − 1) ∈ ℂ ∧
(𝑁 ∈ ℂ ∧
𝑁 ≠ 0)) → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁))) |
| 76 | 73, 12, 13, 75 | syl12anc 836 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁))) |
| 77 | 12, 13 | dividd 12015 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (𝑁 / 𝑁) = 1) |
| 78 | 72, 76, 77 | 3eqtr3d 2778 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1) |
| 79 | 78 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1) |
| 80 | 68, 79 | breqtrd 5145 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
((((⌊‘𝐴) /
𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1) |
| 81 | 29 | flcld 13815 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
(⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ) |
| 82 | 33, 36 | readdcld 11264 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
((((⌊‘𝐴) /
𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℝ) |
| 83 | | flbi2 13834 |
. . . 4
⊢
(((⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ ∧
((((⌊‘𝐴) /
𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℝ) →
((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1))) |
| 84 | 81, 82, 83 | syl2anc 584 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1))) |
| 85 | 49, 80, 84 | mpbir2and 713 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
(⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) −
(⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁))) |
| 86 | 40, 85 | eqtr2d 2771 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) →
(⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁))) |