MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv Structured version   Visualization version   GIF version

Theorem fldiv 13822
Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by NM, 16-Aug-2008.)
Assertion
Ref Expression
fldiv ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))

Proof of Theorem fldiv
StepHypRef Expression
1 eqid 2729 . . . . . . . . 9 (⌊‘𝐴) = (⌊‘𝐴)
2 eqid 2729 . . . . . . . . 9 (𝐴 − (⌊‘𝐴)) = (𝐴 − (⌊‘𝐴))
31, 2intfrac2 13820 . . . . . . . 8 (𝐴 ∈ ℝ → (0 ≤ (𝐴 − (⌊‘𝐴)) ∧ (𝐴 − (⌊‘𝐴)) < 1 ∧ 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴)))))
43simp3d 1144 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))))
54adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))))
65oveq1d 7402 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁))
7 reflcl 13758 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
87recnd 11202 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
9 resubcl 11486 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
107, 9mpdan 687 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
1110recnd 11202 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) ∈ ℂ)
12 nncn 12194 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
13 nnne0 12220 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1412, 13jca 511 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
15 divdir 11862 . . . . . 6 (((⌊‘𝐴) ∈ ℂ ∧ (𝐴 − (⌊‘𝐴)) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
168, 11, 14, 15syl2an3an 1424 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
176, 16eqtrd 2764 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
18 flcl 13757 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
19 eqid 2729 . . . . . . . 8 (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘((⌊‘𝐴) / 𝑁))
20 eqid 2729 . . . . . . . 8 (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) = (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))
2119, 20intfracq 13821 . . . . . . 7 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∧ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))))
2221simp3d 1144 . . . . . 6 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))))
2318, 22sylan 580 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))))
2423oveq1d 7402 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = (((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
257adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘𝐴) ∈ ℝ)
26 nnre 12193 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2726adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
2813adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
2925, 27, 28redivcld 12010 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) ∈ ℝ)
30 reflcl 13758 . . . . . . 7 (((⌊‘𝐴) / 𝑁) ∈ ℝ → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℝ)
3129, 30syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℝ)
3231recnd 11202 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℂ)
3329, 31resubcld 11606 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ)
3433recnd 11202 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℂ)
3510adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
3635, 27, 28redivcld 12010 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ)
3736recnd 11202 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℂ)
3832, 34, 37addassd 11196 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))))
3917, 24, 383eqtrd 2768 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))))
4039fveq2d 6862 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝐴 / 𝑁)) = (⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))))
4121simp1d 1142 . . . . 5 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))
4218, 41sylan 580 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))
43 fracge0 13766 . . . . . 6 (𝐴 ∈ ℝ → 0 ≤ (𝐴 − (⌊‘𝐴)))
4410, 43jca 511 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 − (⌊‘𝐴))))
45 nngt0 12217 . . . . . 6 (𝑁 ∈ ℕ → 0 < 𝑁)
4626, 45jca 511 . . . . 5 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
47 divge0 12052 . . . . 5 ((((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 − (⌊‘𝐴))) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝐴 − (⌊‘𝐴)) / 𝑁))
4844, 46, 47syl2an 596 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤ ((𝐴 − (⌊‘𝐴)) / 𝑁))
4933, 36, 42, 48addge0d 11754 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
50 peano2rem 11489 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
5126, 50syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
5251, 26, 13redivcld 12010 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) ∈ ℝ)
53 nnrecre 12228 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
5452, 53jca 511 . . . . . . 7 (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ))
5554adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ))
5633, 36, 55jca31 514 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ) ∧ (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ)))
5721simp2d 1143 . . . . . . 7 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁))
5818, 57sylan 580 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁))
59 fraclt1 13764 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) < 1)
6059adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) < 1)
61 1re 11174 . . . . . . . . 9 1 ∈ ℝ
62 ltdiv1 12047 . . . . . . . . 9 (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
6361, 62mp3an2 1451 . . . . . . . 8 (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
6410, 46, 63syl2an 596 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
6560, 64mpbid 232 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁))
6658, 65jca 511 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
67 leltadd 11662 . . . . 5 ((((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ) ∧ (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ)) → (((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < (((𝑁 − 1) / 𝑁) + (1 / 𝑁))))
6856, 66, 67sylc 65 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
69 ax-1cn 11126 . . . . . . . 8 1 ∈ ℂ
70 npcan 11430 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
7112, 69, 70sylancl 586 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
7271oveq1d 7402 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (𝑁 / 𝑁))
7351recnd 11202 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
74 divdir 11862 . . . . . . . 8 (((𝑁 − 1) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
7569, 74mp3an2 1451 . . . . . . 7 (((𝑁 − 1) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
7673, 12, 13, 75syl12anc 836 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
7712, 13dividd 11956 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 / 𝑁) = 1)
7872, 76, 773eqtr3d 2772 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1)
7978adantl 481 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1)
8068, 79breqtrd 5133 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)
8129flcld 13760 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ)
8233, 36readdcld 11203 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℝ)
83 flbi2 13779 . . . 4 (((⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℝ) → ((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)))
8481, 82, 83syl2anc 584 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)))
8549, 80, 84mpbir2and 713 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)))
8640, 85eqtr2d 2765 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  cz 12529  cfl 13752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fl 13754
This theorem is referenced by:  fldiv2  13823  modmulnn  13851  digit2  14201  bitsp1  16401
  Copyright terms: Public domain W3C validator