MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv Structured version   Visualization version   GIF version

Theorem fldiv 13765
Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by NM, 16-Aug-2008.)
Assertion
Ref Expression
fldiv ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))

Proof of Theorem fldiv
StepHypRef Expression
1 eqid 2736 . . . . . . . . 9 (⌊‘𝐴) = (⌊‘𝐴)
2 eqid 2736 . . . . . . . . 9 (𝐴 − (⌊‘𝐴)) = (𝐴 − (⌊‘𝐴))
31, 2intfrac2 13763 . . . . . . . 8 (𝐴 ∈ ℝ → (0 ≤ (𝐴 − (⌊‘𝐴)) ∧ (𝐴 − (⌊‘𝐴)) < 1 ∧ 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴)))))
43simp3d 1144 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))))
54adantr 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))))
65oveq1d 7372 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁))
7 reflcl 13701 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
87recnd 11183 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
9 resubcl 11465 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
107, 9mpdan 685 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
1110recnd 11183 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) ∈ ℂ)
12 nncn 12161 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
13 nnne0 12187 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1412, 13jca 512 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
15 divdir 11838 . . . . . 6 (((⌊‘𝐴) ∈ ℂ ∧ (𝐴 − (⌊‘𝐴)) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
168, 11, 14, 15syl2an3an 1422 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
176, 16eqtrd 2776 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
18 flcl 13700 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
19 eqid 2736 . . . . . . . 8 (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘((⌊‘𝐴) / 𝑁))
20 eqid 2736 . . . . . . . 8 (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) = (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))
2119, 20intfracq 13764 . . . . . . 7 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∧ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))))
2221simp3d 1144 . . . . . 6 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))))
2318, 22sylan 580 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))))
2423oveq1d 7372 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = (((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
257adantr 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘𝐴) ∈ ℝ)
26 nnre 12160 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2726adantl 482 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
2813adantl 482 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
2925, 27, 28redivcld 11983 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) ∈ ℝ)
30 reflcl 13701 . . . . . . 7 (((⌊‘𝐴) / 𝑁) ∈ ℝ → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℝ)
3129, 30syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℝ)
3231recnd 11183 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℂ)
3329, 31resubcld 11583 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ)
3433recnd 11183 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℂ)
3510adantr 481 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
3635, 27, 28redivcld 11983 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ)
3736recnd 11183 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℂ)
3832, 34, 37addassd 11177 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))))
3917, 24, 383eqtrd 2780 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))))
4039fveq2d 6846 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝐴 / 𝑁)) = (⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))))
4121simp1d 1142 . . . . 5 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))
4218, 41sylan 580 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))
43 fracge0 13709 . . . . . 6 (𝐴 ∈ ℝ → 0 ≤ (𝐴 − (⌊‘𝐴)))
4410, 43jca 512 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 − (⌊‘𝐴))))
45 nngt0 12184 . . . . . 6 (𝑁 ∈ ℕ → 0 < 𝑁)
4626, 45jca 512 . . . . 5 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
47 divge0 12024 . . . . 5 ((((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 − (⌊‘𝐴))) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝐴 − (⌊‘𝐴)) / 𝑁))
4844, 46, 47syl2an 596 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤ ((𝐴 − (⌊‘𝐴)) / 𝑁))
4933, 36, 42, 48addge0d 11731 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
50 peano2rem 11468 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
5126, 50syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
5251, 26, 13redivcld 11983 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) ∈ ℝ)
53 nnrecre 12195 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
5452, 53jca 512 . . . . . . 7 (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ))
5554adantl 482 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ))
5633, 36, 55jca31 515 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ) ∧ (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ)))
5721simp2d 1143 . . . . . . 7 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁))
5818, 57sylan 580 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁))
59 fraclt1 13707 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) < 1)
6059adantr 481 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) < 1)
61 1re 11155 . . . . . . . . 9 1 ∈ ℝ
62 ltdiv1 12019 . . . . . . . . 9 (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
6361, 62mp3an2 1449 . . . . . . . 8 (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
6410, 46, 63syl2an 596 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
6560, 64mpbid 231 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁))
6658, 65jca 512 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
67 leltadd 11639 . . . . 5 ((((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ) ∧ (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ)) → (((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < (((𝑁 − 1) / 𝑁) + (1 / 𝑁))))
6856, 66, 67sylc 65 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
69 ax-1cn 11109 . . . . . . . 8 1 ∈ ℂ
70 npcan 11410 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
7112, 69, 70sylancl 586 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
7271oveq1d 7372 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (𝑁 / 𝑁))
7351recnd 11183 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
74 divdir 11838 . . . . . . . 8 (((𝑁 − 1) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
7569, 74mp3an2 1449 . . . . . . 7 (((𝑁 − 1) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
7673, 12, 13, 75syl12anc 835 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
7712, 13dividd 11929 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 / 𝑁) = 1)
7872, 76, 773eqtr3d 2784 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1)
7978adantl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1)
8068, 79breqtrd 5131 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)
8129flcld 13703 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ)
8233, 36readdcld 11184 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℝ)
83 flbi2 13722 . . . 4 (((⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℝ) → ((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)))
8481, 82, 83syl2anc 584 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)))
8549, 80, 84mpbir2and 711 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)))
8640, 85eqtr2d 2777 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  cz 12499  cfl 13695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fl 13697
This theorem is referenced by:  fldiv2  13766  modmulnn  13794  digit2  14139  bitsp1  16311
  Copyright terms: Public domain W3C validator