MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatass Structured version   Visualization version   GIF version

Theorem ccatass 14529
Description: Associative law for concatenation of words. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
ccatass ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ++ 𝑈) = (𝑆 ++ (𝑇 ++ 𝑈)))

Proof of Theorem ccatass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatcl 14515 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵)
2 ccatcl 14515 . . . . 5 (((𝑆 ++ 𝑇) ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ++ 𝑈) ∈ Word 𝐵)
31, 2stoic3 1776 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ++ 𝑈) ∈ Word 𝐵)
4 wrdfn 14469 . . . 4 (((𝑆 ++ 𝑇) ++ 𝑈) ∈ Word 𝐵 → ((𝑆 ++ 𝑇) ++ 𝑈) Fn (0..^(♯‘((𝑆 ++ 𝑇) ++ 𝑈))))
53, 4syl 17 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ++ 𝑈) Fn (0..^(♯‘((𝑆 ++ 𝑇) ++ 𝑈))))
6 ccatlen 14516 . . . . . . 7 (((𝑆 ++ 𝑇) ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘((𝑆 ++ 𝑇) ++ 𝑈)) = ((♯‘(𝑆 ++ 𝑇)) + (♯‘𝑈)))
71, 6stoic3 1776 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘((𝑆 ++ 𝑇) ++ 𝑈)) = ((♯‘(𝑆 ++ 𝑇)) + (♯‘𝑈)))
8 ccatlen 14516 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))
983adant3 1132 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))
109oveq1d 7384 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((♯‘(𝑆 ++ 𝑇)) + (♯‘𝑈)) = (((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))
117, 10eqtrd 2764 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘((𝑆 ++ 𝑇) ++ 𝑈)) = (((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))
1211oveq2d 7385 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (0..^(♯‘((𝑆 ++ 𝑇) ++ 𝑈))) = (0..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))))
1312fneq2d 6594 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (((𝑆 ++ 𝑇) ++ 𝑈) Fn (0..^(♯‘((𝑆 ++ 𝑇) ++ 𝑈))) ↔ ((𝑆 ++ 𝑇) ++ 𝑈) Fn (0..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))))
145, 13mpbid 232 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ++ 𝑈) Fn (0..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))))
15 simp1 1136 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → 𝑆 ∈ Word 𝐵)
16 ccatcl 14515 . . . . . 6 ((𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (𝑇 ++ 𝑈) ∈ Word 𝐵)
17163adant1 1130 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (𝑇 ++ 𝑈) ∈ Word 𝐵)
18 ccatcl 14515 . . . . 5 ((𝑆 ∈ Word 𝐵 ∧ (𝑇 ++ 𝑈) ∈ Word 𝐵) → (𝑆 ++ (𝑇 ++ 𝑈)) ∈ Word 𝐵)
1915, 17, 18syl2anc 584 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (𝑆 ++ (𝑇 ++ 𝑈)) ∈ Word 𝐵)
20 wrdfn 14469 . . . 4 ((𝑆 ++ (𝑇 ++ 𝑈)) ∈ Word 𝐵 → (𝑆 ++ (𝑇 ++ 𝑈)) Fn (0..^(♯‘(𝑆 ++ (𝑇 ++ 𝑈)))))
2119, 20syl 17 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (𝑆 ++ (𝑇 ++ 𝑈)) Fn (0..^(♯‘(𝑆 ++ (𝑇 ++ 𝑈)))))
22 ccatlen 14516 . . . . . . . 8 ((𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘(𝑇 ++ 𝑈)) = ((♯‘𝑇) + (♯‘𝑈)))
23223adant1 1130 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘(𝑇 ++ 𝑈)) = ((♯‘𝑇) + (♯‘𝑈)))
2423oveq2d 7385 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘(𝑇 ++ 𝑈))) = ((♯‘𝑆) + ((♯‘𝑇) + (♯‘𝑈))))
25 ccatlen 14516 . . . . . . 7 ((𝑆 ∈ Word 𝐵 ∧ (𝑇 ++ 𝑈) ∈ Word 𝐵) → (♯‘(𝑆 ++ (𝑇 ++ 𝑈))) = ((♯‘𝑆) + (♯‘(𝑇 ++ 𝑈))))
2615, 17, 25syl2anc 584 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘(𝑆 ++ (𝑇 ++ 𝑈))) = ((♯‘𝑆) + (♯‘(𝑇 ++ 𝑈))))
27 lencl 14474 . . . . . . . . 9 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
28273ad2ant1 1133 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘𝑆) ∈ ℕ0)
2928nn0cnd 12481 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘𝑆) ∈ ℂ)
30 lencl 14474 . . . . . . . . 9 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
31303ad2ant2 1134 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘𝑇) ∈ ℕ0)
3231nn0cnd 12481 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘𝑇) ∈ ℂ)
33 lencl 14474 . . . . . . . . 9 (𝑈 ∈ Word 𝐵 → (♯‘𝑈) ∈ ℕ0)
34333ad2ant3 1135 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘𝑈) ∈ ℕ0)
3534nn0cnd 12481 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘𝑈) ∈ ℂ)
3629, 32, 35addassd 11172 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)) = ((♯‘𝑆) + ((♯‘𝑇) + (♯‘𝑈))))
3724, 26, 363eqtr4d 2774 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘(𝑆 ++ (𝑇 ++ 𝑈))) = (((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))
3837oveq2d 7385 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (0..^(♯‘(𝑆 ++ (𝑇 ++ 𝑈)))) = (0..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))))
3938fneq2d 6594 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((𝑆 ++ (𝑇 ++ 𝑈)) Fn (0..^(♯‘(𝑆 ++ (𝑇 ++ 𝑈)))) ↔ (𝑆 ++ (𝑇 ++ 𝑈)) Fn (0..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))))
4021, 39mpbid 232 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (𝑆 ++ (𝑇 ++ 𝑈)) Fn (0..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))))
4128nn0zd 12531 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘𝑆) ∈ ℤ)
42 fzospliti 13628 . . . . 5 ((𝑥 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))) ∧ (♯‘𝑆) ∈ ℤ) → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))))
4342ex 412 . . . 4 (𝑥 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))) → ((♯‘𝑆) ∈ ℤ → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))))))
4441, 43mpan9 506 . . 3 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))))
45 simp2 1137 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → 𝑇 ∈ Word 𝐵)
46 id 22 . . . . . 6 (𝑥 ∈ (0..^(♯‘𝑆)) → 𝑥 ∈ (0..^(♯‘𝑆)))
47 ccatval1 14518 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑆𝑥))
4815, 45, 46, 47syl2an3an 1424 . . . . 5 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑆𝑥))
4913adant3 1132 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵)
5049adantr 480 . . . . . 6 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆 ++ 𝑇) ∈ Word 𝐵)
51 simpl3 1194 . . . . . 6 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑈 ∈ Word 𝐵)
5241uzidd 12785 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)))
53 uzaddcl 12839 . . . . . . . . . 10 (((♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
5452, 31, 53syl2anc 584 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
55 fzoss2 13624 . . . . . . . . 9 (((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
5654, 55syl 17 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
579oveq2d 7385 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (0..^(♯‘(𝑆 ++ 𝑇))) = (0..^((♯‘𝑆) + (♯‘𝑇))))
5856, 57sseqtrrd 3981 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (0..^(♯‘𝑆)) ⊆ (0..^(♯‘(𝑆 ++ 𝑇))))
5958sselda 3943 . . . . . 6 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ (0..^(♯‘(𝑆 ++ 𝑇))))
60 ccatval1 14518 . . . . . 6 (((𝑆 ++ 𝑇) ∈ Word 𝐵𝑈 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘(𝑆 ++ 𝑇)))) → (((𝑆 ++ 𝑇) ++ 𝑈)‘𝑥) = ((𝑆 ++ 𝑇)‘𝑥))
6150, 51, 59, 60syl3anc 1373 . . . . 5 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (((𝑆 ++ 𝑇) ++ 𝑈)‘𝑥) = ((𝑆 ++ 𝑇)‘𝑥))
62 ccatval1 14518 . . . . . 6 ((𝑆 ∈ Word 𝐵 ∧ (𝑇 ++ 𝑈) ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ (𝑇 ++ 𝑈))‘𝑥) = (𝑆𝑥))
6315, 17, 46, 62syl2an3an 1424 . . . . 5 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ (𝑇 ++ 𝑈))‘𝑥) = (𝑆𝑥))
6448, 61, 633eqtr4d 2774 . . . 4 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (((𝑆 ++ 𝑇) ++ 𝑈)‘𝑥) = ((𝑆 ++ (𝑇 ++ 𝑈))‘𝑥))
6531nn0zd 12531 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘𝑇) ∈ ℤ)
6641, 65zaddcld 12618 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ)
67 fzospliti 13628 . . . . . . 7 ((𝑥 ∈ ((♯‘𝑆)..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ) → (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ∨ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))))
6867ex 412 . . . . . 6 (𝑥 ∈ ((♯‘𝑆)..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))) → (((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ → (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ∨ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))))))
6966, 68mpan9 506 . . . . 5 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ∨ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))))
70 id 22 . . . . . . . . 9 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))
71 ccatval2 14519 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑇‘(𝑥 − (♯‘𝑆))))
7215, 45, 70, 71syl2an3an 1424 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑇‘(𝑥 − (♯‘𝑆))))
73 simpl2 1193 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑇 ∈ Word 𝐵)
74 simpl3 1194 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑈 ∈ Word 𝐵)
75 fzosubel3 13663 . . . . . . . . . . 11 ((𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ∧ (♯‘𝑇) ∈ ℤ) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
7675ex 412 . . . . . . . . . 10 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → ((♯‘𝑇) ∈ ℤ → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))))
7765, 76mpan9 506 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
78 ccatval1 14518 . . . . . . . . 9 ((𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵 ∧ (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) → ((𝑇 ++ 𝑈)‘(𝑥 − (♯‘𝑆))) = (𝑇‘(𝑥 − (♯‘𝑆))))
7973, 74, 77, 78syl3anc 1373 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑇 ++ 𝑈)‘(𝑥 − (♯‘𝑆))) = (𝑇‘(𝑥 − (♯‘𝑆))))
8072, 79eqtr4d 2767 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) = ((𝑇 ++ 𝑈)‘(𝑥 − (♯‘𝑆))))
8149adantr 480 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑆 ++ 𝑇) ∈ Word 𝐵)
82 fzoss1 13623 . . . . . . . . . . . 12 ((♯‘𝑆) ∈ (ℤ‘0) → ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
83 nn0uz 12811 . . . . . . . . . . . 12 0 = (ℤ‘0)
8482, 83eleq2s 2846 . . . . . . . . . . 11 ((♯‘𝑆) ∈ ℕ0 → ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
8528, 84syl 17 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
8685, 57sseqtrrd 3981 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ⊆ (0..^(♯‘(𝑆 ++ 𝑇))))
8786sselda 3943 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 ∈ (0..^(♯‘(𝑆 ++ 𝑇))))
8881, 74, 87, 60syl3anc 1373 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (((𝑆 ++ 𝑇) ++ 𝑈)‘𝑥) = ((𝑆 ++ 𝑇)‘𝑥))
89 simpl1 1192 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑆 ∈ Word 𝐵)
9017adantr 480 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑇 ++ 𝑈) ∈ Word 𝐵)
9166uzidd 12785 . . . . . . . . . . . 12 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘((♯‘𝑆) + (♯‘𝑇))))
92 uzaddcl 12839 . . . . . . . . . . . 12 ((((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘((♯‘𝑆) + (♯‘𝑇))) ∧ (♯‘𝑈) ∈ ℕ0) → (((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)) ∈ (ℤ‘((♯‘𝑆) + (♯‘𝑇))))
9391, 34, 92syl2anc 584 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)) ∈ (ℤ‘((♯‘𝑆) + (♯‘𝑇))))
94 fzoss2 13624 . . . . . . . . . . 11 ((((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)) ∈ (ℤ‘((♯‘𝑆) + (♯‘𝑇))) → ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ⊆ ((♯‘𝑆)..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))))
9593, 94syl 17 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ⊆ ((♯‘𝑆)..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))))
9624, 36eqtr4d 2767 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘(𝑇 ++ 𝑈))) = (((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))
9796oveq2d 7385 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((♯‘𝑆)..^((♯‘𝑆) + (♯‘(𝑇 ++ 𝑈)))) = ((♯‘𝑆)..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))))
9895, 97sseqtrrd 3981 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ⊆ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘(𝑇 ++ 𝑈)))))
9998sselda 3943 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘(𝑇 ++ 𝑈)))))
100 ccatval2 14519 . . . . . . . 8 ((𝑆 ∈ Word 𝐵 ∧ (𝑇 ++ 𝑈) ∈ Word 𝐵𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘(𝑇 ++ 𝑈))))) → ((𝑆 ++ (𝑇 ++ 𝑈))‘𝑥) = ((𝑇 ++ 𝑈)‘(𝑥 − (♯‘𝑆))))
10189, 90, 99, 100syl3anc 1373 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ (𝑇 ++ 𝑈))‘𝑥) = ((𝑇 ++ 𝑈)‘(𝑥 − (♯‘𝑆))))
10280, 88, 1013eqtr4d 2774 . . . . . 6 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (((𝑆 ++ 𝑇) ++ 𝑈)‘𝑥) = ((𝑆 ++ (𝑇 ++ 𝑈))‘𝑥))
1039oveq2d 7385 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (𝑥 − (♯‘(𝑆 ++ 𝑇))) = (𝑥 − ((♯‘𝑆) + (♯‘𝑇))))
104103adantr 480 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → (𝑥 − (♯‘(𝑆 ++ 𝑇))) = (𝑥 − ((♯‘𝑆) + (♯‘𝑇))))
105 elfzoelz 13596 . . . . . . . . . . . . 13 (𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))) → 𝑥 ∈ ℤ)
106105zcnd 12615 . . . . . . . . . . . 12 (𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))) → 𝑥 ∈ ℂ)
107106adantl 481 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → 𝑥 ∈ ℂ)
10829adantr 480 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → (♯‘𝑆) ∈ ℂ)
10932adantr 480 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → (♯‘𝑇) ∈ ℂ)
110107, 108, 109subsub4d 11540 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → ((𝑥 − (♯‘𝑆)) − (♯‘𝑇)) = (𝑥 − ((♯‘𝑆) + (♯‘𝑇))))
111104, 110eqtr4d 2767 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → (𝑥 − (♯‘(𝑆 ++ 𝑇))) = ((𝑥 − (♯‘𝑆)) − (♯‘𝑇)))
112111fveq2d 6844 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → (𝑈‘(𝑥 − (♯‘(𝑆 ++ 𝑇)))) = (𝑈‘((𝑥 − (♯‘𝑆)) − (♯‘𝑇))))
113 simpl2 1193 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → 𝑇 ∈ Word 𝐵)
114 simpl3 1194 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → 𝑈 ∈ Word 𝐵)
11536oveq2d 7385 . . . . . . . . . . . 12 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))) = (((♯‘𝑆) + (♯‘𝑇))..^((♯‘𝑆) + ((♯‘𝑇) + (♯‘𝑈)))))
116115eleq2d 2814 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))) ↔ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^((♯‘𝑆) + ((♯‘𝑇) + (♯‘𝑈))))))
117116biimpa 476 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^((♯‘𝑆) + ((♯‘𝑇) + (♯‘𝑈)))))
11834nn0zd 12531 . . . . . . . . . . . . 13 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (♯‘𝑈) ∈ ℤ)
11965, 118zaddcld 12618 . . . . . . . . . . . 12 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((♯‘𝑇) + (♯‘𝑈)) ∈ ℤ)
12041, 65, 1193jca 1128 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ ∧ ((♯‘𝑇) + (♯‘𝑈)) ∈ ℤ))
121120adantr 480 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ ∧ ((♯‘𝑇) + (♯‘𝑈)) ∈ ℤ))
122 fzosubel2 13662 . . . . . . . . . 10 ((𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^((♯‘𝑆) + ((♯‘𝑇) + (♯‘𝑈)))) ∧ ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ ∧ ((♯‘𝑇) + (♯‘𝑈)) ∈ ℤ)) → (𝑥 − (♯‘𝑆)) ∈ ((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))))
123117, 121, 122syl2anc 584 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → (𝑥 − (♯‘𝑆)) ∈ ((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈))))
124 ccatval2 14519 . . . . . . . . 9 ((𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵 ∧ (𝑥 − (♯‘𝑆)) ∈ ((♯‘𝑇)..^((♯‘𝑇) + (♯‘𝑈)))) → ((𝑇 ++ 𝑈)‘(𝑥 − (♯‘𝑆))) = (𝑈‘((𝑥 − (♯‘𝑆)) − (♯‘𝑇))))
125113, 114, 123, 124syl3anc 1373 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → ((𝑇 ++ 𝑈)‘(𝑥 − (♯‘𝑆))) = (𝑈‘((𝑥 − (♯‘𝑆)) − (♯‘𝑇))))
126112, 125eqtr4d 2767 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → (𝑈‘(𝑥 − (♯‘(𝑆 ++ 𝑇)))) = ((𝑇 ++ 𝑈)‘(𝑥 − (♯‘𝑆))))
12749adantr 480 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → (𝑆 ++ 𝑇) ∈ Word 𝐵)
1289, 10oveq12d 7387 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((♯‘(𝑆 ++ 𝑇))..^((♯‘(𝑆 ++ 𝑇)) + (♯‘𝑈))) = (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))))
129128eleq2d 2814 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (𝑥 ∈ ((♯‘(𝑆 ++ 𝑇))..^((♯‘(𝑆 ++ 𝑇)) + (♯‘𝑈))) ↔ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))))
130129biimpar 477 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → 𝑥 ∈ ((♯‘(𝑆 ++ 𝑇))..^((♯‘(𝑆 ++ 𝑇)) + (♯‘𝑈))))
131 ccatval2 14519 . . . . . . . 8 (((𝑆 ++ 𝑇) ∈ Word 𝐵𝑈 ∈ Word 𝐵𝑥 ∈ ((♯‘(𝑆 ++ 𝑇))..^((♯‘(𝑆 ++ 𝑇)) + (♯‘𝑈)))) → (((𝑆 ++ 𝑇) ++ 𝑈)‘𝑥) = (𝑈‘(𝑥 − (♯‘(𝑆 ++ 𝑇)))))
132127, 114, 130, 131syl3anc 1373 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → (((𝑆 ++ 𝑇) ++ 𝑈)‘𝑥) = (𝑈‘(𝑥 − (♯‘(𝑆 ++ 𝑇)))))
133 simpl1 1192 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → 𝑆 ∈ Word 𝐵)
13417adantr 480 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → (𝑇 ++ 𝑈) ∈ Word 𝐵)
135 fzoss1 13623 . . . . . . . . . . 11 (((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)) → (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))) ⊆ ((♯‘𝑆)..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))))
13654, 135syl 17 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))) ⊆ ((♯‘𝑆)..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))))
137136, 97sseqtrrd 3981 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))) ⊆ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘(𝑇 ++ 𝑈)))))
138137sselda 3943 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘(𝑇 ++ 𝑈)))))
139133, 134, 138, 100syl3anc 1373 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → ((𝑆 ++ (𝑇 ++ 𝑈))‘𝑥) = ((𝑇 ++ 𝑈)‘(𝑥 − (♯‘𝑆))))
140126, 132, 1393eqtr4d 2774 . . . . . 6 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → (((𝑆 ++ 𝑇) ++ 𝑈)‘𝑥) = ((𝑆 ++ (𝑇 ++ 𝑈))‘𝑥))
141102, 140jaodan 959 . . . . 5 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) ∨ 𝑥 ∈ (((♯‘𝑆) + (♯‘𝑇))..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))))) → (((𝑆 ++ 𝑇) ++ 𝑈)‘𝑥) = ((𝑆 ++ (𝑇 ++ 𝑈))‘𝑥))
14269, 141syldan 591 . . . 4 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → (((𝑆 ++ 𝑇) ++ 𝑈)‘𝑥) = ((𝑆 ++ (𝑇 ++ 𝑈))‘𝑥))
14364, 142jaodan 959 . . 3 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈))))) → (((𝑆 ++ 𝑇) ++ 𝑈)‘𝑥) = ((𝑆 ++ (𝑇 ++ 𝑈))‘𝑥))
14444, 143syldan 591 . 2 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) + (♯‘𝑈)))) → (((𝑆 ++ 𝑇) ++ 𝑈)‘𝑥) = ((𝑆 ++ (𝑇 ++ 𝑈))‘𝑥))
14514, 40, 144eqfnfvd 6988 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ++ 𝑈) = (𝑆 ++ (𝑇 ++ 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wss 3911   Fn wfn 6494  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044   + caddc 11047  cmin 11381  0cn0 12418  cz 12505  cuz 12769  ..^cfzo 13591  chash 14271  Word cword 14454   ++ cconcat 14511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512
This theorem is referenced by:  ccatw2s1ass  14572  cats1cat  14803  cats2cat  14804  frmdmnd  18768  efginvrel2  19641  efgredleme  19657  efgredlemc  19659  efgcpbllemb  19669  numclwwlk1lem2foalem  30330  numclwwlk1lem2fo  30337  signstfvc  34558
  Copyright terms: Public domain W3C validator