Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclc0xyqsolb Structured version   Visualization version   GIF version

Theorem itsclc0xyqsolb 47766
Description: Lemma for itsclc0 47767. Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.)
Hypotheses
Ref Expression
itsclc0xyqsolr.q ๐‘„ = ((๐ดโ†‘2) + (๐ตโ†‘2))
itsclc0xyqsolr.d ๐ท = (((๐‘…โ†‘2) ยท ๐‘„) โˆ’ (๐ถโ†‘2))
Assertion
Ref Expression
itsclc0xyqsolb ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง (๐ด โ‰  0 โˆจ ๐ต โ‰  0)) โˆง ((๐‘… โˆˆ โ„+ โˆง 0 โ‰ค ๐ท) โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†” ((๐‘‹ = (((๐ด ยท ๐ถ) + (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) โˆ’ (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)) โˆจ (๐‘‹ = (((๐ด ยท ๐ถ) โˆ’ (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) + (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)))))

Proof of Theorem itsclc0xyqsolb
StepHypRef Expression
1 itsclc0xyqsolr.q . . . 4 ๐‘„ = ((๐ดโ†‘2) + (๐ตโ†‘2))
2 itsclc0xyqsolr.d . . . 4 ๐ท = (((๐‘…โ†‘2) ยท ๐‘„) โˆ’ (๐ถโ†‘2))
31, 2itsclc0xyqsol 47764 . . 3 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง (๐ด โ‰  0 โˆจ ๐ต โ‰  0)) โˆง (๐‘… โˆˆ โ„+ โˆง 0 โ‰ค ๐ท) โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘‹ = (((๐ด ยท ๐ถ) + (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) โˆ’ (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)) โˆจ (๐‘‹ = (((๐ด ยท ๐ถ) โˆ’ (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) + (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)))))
433expb 1118 . 2 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง (๐ด โ‰  0 โˆจ ๐ต โ‰  0)) โˆง ((๐‘… โˆˆ โ„+ โˆง 0 โ‰ค ๐ท) โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘‹ = (((๐ด ยท ๐ถ) + (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) โˆ’ (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)) โˆจ (๐‘‹ = (((๐ด ยท ๐ถ) โˆ’ (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) + (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)))))
5 simpl 482 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง (๐ด โ‰  0 โˆจ ๐ต โ‰  0)) โ†’ (๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„))
6 simpr 484 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง (๐ด โ‰  0 โˆจ ๐ต โ‰  0)) โ†’ (๐ด โ‰  0 โˆจ ๐ต โ‰  0))
7 simpl 482 . . 3 (((๐‘… โˆˆ โ„+ โˆง 0 โ‰ค ๐ท) โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ (๐‘… โˆˆ โ„+ โˆง 0 โ‰ค ๐ท))
81, 2itsclc0xyqsolr 47765 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง (๐ด โ‰  0 โˆจ ๐ต โ‰  0) โˆง (๐‘… โˆˆ โ„+ โˆง 0 โ‰ค ๐ท)) โ†’ (((๐‘‹ = (((๐ด ยท ๐ถ) + (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) โˆ’ (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)) โˆจ (๐‘‹ = (((๐ด ยท ๐ถ) โˆ’ (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) + (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„))) โ†’ (((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ)))
95, 6, 7, 8syl2an3an 1420 . 2 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง (๐ด โ‰  0 โˆจ ๐ต โ‰  0)) โˆง ((๐‘… โˆˆ โ„+ โˆง 0 โ‰ค ๐ท) โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ (((๐‘‹ = (((๐ด ยท ๐ถ) + (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) โˆ’ (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)) โˆจ (๐‘‹ = (((๐ด ยท ๐ถ) โˆ’ (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) + (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„))) โ†’ (((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ)))
104, 9impbid 211 1 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง (๐ด โ‰  0 โˆจ ๐ต โ‰  0)) โˆง ((๐‘… โˆˆ โ„+ โˆง 0 โ‰ค ๐ท) โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†” ((๐‘‹ = (((๐ด ยท ๐ถ) + (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) โˆ’ (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)) โˆจ (๐‘‹ = (((๐ด ยท ๐ถ) โˆ’ (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) + (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)))))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   โˆจ wo 846   โˆง w3a 1085   = wceq 1534   โˆˆ wcel 2099   โ‰  wne 2935   class class class wbr 5142  โ€˜cfv 6542  (class class class)co 7414  โ„cr 11129  0cc0 11130   + caddc 11133   ยท cmul 11135   โ‰ค cle 11271   โˆ’ cmin 11466   / cdiv 11893  2c2 12289  โ„+crp 12998  โ†‘cexp 14050  โˆšcsqrt 15204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-sup 9457  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-seq 13991  df-exp 14051  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207
This theorem is referenced by:  itsclc0b  47768
  Copyright terms: Public domain W3C validator