Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclc0xyqsolb Structured version   Visualization version   GIF version

Theorem itsclc0xyqsolb 47951
Description: Lemma for itsclc0 47952. Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.)
Hypotheses
Ref Expression
itsclc0xyqsolr.q ๐‘„ = ((๐ดโ†‘2) + (๐ตโ†‘2))
itsclc0xyqsolr.d ๐ท = (((๐‘…โ†‘2) ยท ๐‘„) โˆ’ (๐ถโ†‘2))
Assertion
Ref Expression
itsclc0xyqsolb ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง (๐ด โ‰  0 โˆจ ๐ต โ‰  0)) โˆง ((๐‘… โˆˆ โ„+ โˆง 0 โ‰ค ๐ท) โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†” ((๐‘‹ = (((๐ด ยท ๐ถ) + (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) โˆ’ (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)) โˆจ (๐‘‹ = (((๐ด ยท ๐ถ) โˆ’ (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) + (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)))))

Proof of Theorem itsclc0xyqsolb
StepHypRef Expression
1 itsclc0xyqsolr.q . . . 4 ๐‘„ = ((๐ดโ†‘2) + (๐ตโ†‘2))
2 itsclc0xyqsolr.d . . . 4 ๐ท = (((๐‘…โ†‘2) ยท ๐‘„) โˆ’ (๐ถโ†‘2))
31, 2itsclc0xyqsol 47949 . . 3 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง (๐ด โ‰  0 โˆจ ๐ต โ‰  0)) โˆง (๐‘… โˆˆ โ„+ โˆง 0 โ‰ค ๐ท) โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘‹ = (((๐ด ยท ๐ถ) + (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) โˆ’ (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)) โˆจ (๐‘‹ = (((๐ด ยท ๐ถ) โˆ’ (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) + (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)))))
433expb 1117 . 2 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง (๐ด โ‰  0 โˆจ ๐ต โ‰  0)) โˆง ((๐‘… โˆˆ โ„+ โˆง 0 โ‰ค ๐ท) โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘‹ = (((๐ด ยท ๐ถ) + (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) โˆ’ (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)) โˆจ (๐‘‹ = (((๐ด ยท ๐ถ) โˆ’ (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) + (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)))))
5 simpl 481 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง (๐ด โ‰  0 โˆจ ๐ต โ‰  0)) โ†’ (๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„))
6 simpr 483 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง (๐ด โ‰  0 โˆจ ๐ต โ‰  0)) โ†’ (๐ด โ‰  0 โˆจ ๐ต โ‰  0))
7 simpl 481 . . 3 (((๐‘… โˆˆ โ„+ โˆง 0 โ‰ค ๐ท) โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ (๐‘… โˆˆ โ„+ โˆง 0 โ‰ค ๐ท))
81, 2itsclc0xyqsolr 47950 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง (๐ด โ‰  0 โˆจ ๐ต โ‰  0) โˆง (๐‘… โˆˆ โ„+ โˆง 0 โ‰ค ๐ท)) โ†’ (((๐‘‹ = (((๐ด ยท ๐ถ) + (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) โˆ’ (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)) โˆจ (๐‘‹ = (((๐ด ยท ๐ถ) โˆ’ (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) + (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„))) โ†’ (((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ)))
95, 6, 7, 8syl2an3an 1419 . 2 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง (๐ด โ‰  0 โˆจ ๐ต โ‰  0)) โˆง ((๐‘… โˆˆ โ„+ โˆง 0 โ‰ค ๐ท) โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ (((๐‘‹ = (((๐ด ยท ๐ถ) + (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) โˆ’ (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)) โˆจ (๐‘‹ = (((๐ด ยท ๐ถ) โˆ’ (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) + (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„))) โ†’ (((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ)))
104, 9impbid 211 1 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง (๐ด โ‰  0 โˆจ ๐ต โ‰  0)) โˆง ((๐‘… โˆˆ โ„+ โˆง 0 โ‰ค ๐ท) โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†” ((๐‘‹ = (((๐ด ยท ๐ถ) + (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) โˆ’ (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)) โˆจ (๐‘‹ = (((๐ด ยท ๐ถ) โˆ’ (๐ต ยท (โˆšโ€˜๐ท))) / ๐‘„) โˆง ๐‘Œ = (((๐ต ยท ๐ถ) + (๐ด ยท (โˆšโ€˜๐ท))) / ๐‘„)))))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 394   โˆจ wo 845   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098   โ‰  wne 2930   class class class wbr 5144  โ€˜cfv 6543  (class class class)co 7413  โ„cr 11132  0cc0 11133   + caddc 11136   ยท cmul 11138   โ‰ค cle 11274   โˆ’ cmin 11469   / cdiv 11896  2c2 12292  โ„+crp 13001  โ†‘cexp 14053  โˆšcsqrt 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9460  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-n0 12498  df-z 12584  df-uz 12848  df-rp 13002  df-seq 13994  df-exp 14054  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210
This theorem is referenced by:  itsclc0b  47953
  Copyright terms: Public domain W3C validator