MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2foalem Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2foalem 28616
Description: Lemma for numclwwlk1lem2foa 28619. (Contributed by AV, 29-May-2021.) (Revised by AV, 1-Nov-2022.)
Assertion
Ref Expression
numclwwlk1lem2foalem (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))

Proof of Theorem numclwwlk1lem2foalem
StepHypRef Expression
1 simpl 482 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) → 𝑊 ∈ Word 𝑉)
2 s1cl 14235 . . . . . . . 8 (𝑋𝑉 → ⟨“𝑋”⟩ ∈ Word 𝑉)
3 s1cl 14235 . . . . . . . 8 (𝑌𝑉 → ⟨“𝑌”⟩ ∈ Word 𝑉)
41, 2, 33anim123i 1149 . . . . . . 7 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ 𝑋𝑉𝑌𝑉) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑋”⟩ ∈ Word 𝑉 ∧ ⟨“𝑌”⟩ ∈ Word 𝑉))
543expb 1118 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑋”⟩ ∈ Word 𝑉 ∧ ⟨“𝑌”⟩ ∈ Word 𝑉))
6 ccatass 14221 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑋”⟩ ∈ Word 𝑉 ∧ ⟨“𝑌”⟩ ∈ Word 𝑉) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) = (𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)))
75, 6syl 17 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) = (𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)))
87oveq1d 7270 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = ((𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)) prefix (𝑁 − 2)))
91adantr 480 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → 𝑊 ∈ Word 𝑉)
10 ccat2s1cl 14251 . . . . . 6 ((𝑋𝑉𝑌𝑉) → (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩) ∈ Word 𝑉)
1110adantl 481 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩) ∈ Word 𝑉)
12 simpr 484 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) → (♯‘𝑊) = (𝑁 − 2))
1312eqcomd 2744 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑁 − 2) = (♯‘𝑊))
1413adantr 480 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (𝑁 − 2) = (♯‘𝑊))
15 pfxccatid 14382 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ (𝑁 − 2) = (♯‘𝑊)) → ((𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)) prefix (𝑁 − 2)) = 𝑊)
169, 11, 14, 15syl3anc 1369 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → ((𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)) prefix (𝑁 − 2)) = 𝑊)
178, 16eqtrd 2778 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊)
18173adant3 1130 . 2 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊)
19 1e2m1 12030 . . . . . . 7 1 = (2 − 1)
2019oveq2i 7266 . . . . . 6 (𝑁 − 1) = (𝑁 − (2 − 1))
21 eluzelcn 12523 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
22 2cnd 11981 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℂ)
23 1cnd 10901 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 1 ∈ ℂ)
2421, 22, 23subsubd 11290 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
2520, 24syl5eq 2791 . . . . 5 (𝑁 ∈ (ℤ‘3) → (𝑁 − 1) = ((𝑁 − 2) + 1))
26253ad2ant3 1133 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (𝑁 − 1) = ((𝑁 − 2) + 1))
2726fveq2d 6760 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((𝑁 − 2) + 1)))
28 ccatw2s1p2 14276 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((𝑁 − 2) + 1)) = 𝑌)
29283adant3 1130 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((𝑁 − 2) + 1)) = 𝑌)
3027, 29eqtrd 2778 . 2 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌)
31 simpl 482 . . . 4 ((𝑋𝑉𝑌𝑉) → 𝑋𝑉)
32 ccatw2s1p1 14274 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ 𝑋𝑉) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋)
331, 12, 31, 32syl2an3an 1420 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋)
34333adant3 1130 . 2 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋)
3518, 30, 343jca 1126 1 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805  cmin 11135  2c2 11958  3c3 11959  cuz 12511  chash 13972  Word cword 14145   ++ cconcat 14201  ⟨“cs1 14228   prefix cpfx 14311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312
This theorem is referenced by:  numclwwlk1lem2foa  28619
  Copyright terms: Public domain W3C validator