MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2foalem Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2foalem 28136
Description: Lemma for numclwwlk1lem2foa 28139. (Contributed by AV, 29-May-2021.) (Revised by AV, 1-Nov-2022.)
Assertion
Ref Expression
numclwwlk1lem2foalem (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))

Proof of Theorem numclwwlk1lem2foalem
StepHypRef Expression
1 simpl 486 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) → 𝑊 ∈ Word 𝑉)
2 s1cl 13947 . . . . . . . 8 (𝑋𝑉 → ⟨“𝑋”⟩ ∈ Word 𝑉)
3 s1cl 13947 . . . . . . . 8 (𝑌𝑉 → ⟨“𝑌”⟩ ∈ Word 𝑉)
41, 2, 33anim123i 1148 . . . . . . 7 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ 𝑋𝑉𝑌𝑉) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑋”⟩ ∈ Word 𝑉 ∧ ⟨“𝑌”⟩ ∈ Word 𝑉))
543expb 1117 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑋”⟩ ∈ Word 𝑉 ∧ ⟨“𝑌”⟩ ∈ Word 𝑉))
6 ccatass 13933 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑋”⟩ ∈ Word 𝑉 ∧ ⟨“𝑌”⟩ ∈ Word 𝑉) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) = (𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)))
75, 6syl 17 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) = (𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)))
87oveq1d 7150 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = ((𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)) prefix (𝑁 − 2)))
91adantr 484 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → 𝑊 ∈ Word 𝑉)
10 ccat2s1cl 13963 . . . . . 6 ((𝑋𝑉𝑌𝑉) → (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩) ∈ Word 𝑉)
1110adantl 485 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩) ∈ Word 𝑉)
12 simpr 488 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) → (♯‘𝑊) = (𝑁 − 2))
1312eqcomd 2804 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑁 − 2) = (♯‘𝑊))
1413adantr 484 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (𝑁 − 2) = (♯‘𝑊))
15 pfxccatid 14094 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ (𝑁 − 2) = (♯‘𝑊)) → ((𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)) prefix (𝑁 − 2)) = 𝑊)
169, 11, 14, 15syl3anc 1368 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → ((𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)) prefix (𝑁 − 2)) = 𝑊)
178, 16eqtrd 2833 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊)
18173adant3 1129 . 2 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊)
19 1e2m1 11752 . . . . . . 7 1 = (2 − 1)
2019oveq2i 7146 . . . . . 6 (𝑁 − 1) = (𝑁 − (2 − 1))
21 eluzelcn 12243 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
22 2cnd 11703 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℂ)
23 1cnd 10625 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 1 ∈ ℂ)
2421, 22, 23subsubd 11014 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
2520, 24syl5eq 2845 . . . . 5 (𝑁 ∈ (ℤ‘3) → (𝑁 − 1) = ((𝑁 − 2) + 1))
26253ad2ant3 1132 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (𝑁 − 1) = ((𝑁 − 2) + 1))
2726fveq2d 6649 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((𝑁 − 2) + 1)))
28 ccatw2s1p2 13988 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((𝑁 − 2) + 1)) = 𝑌)
29283adant3 1129 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((𝑁 − 2) + 1)) = 𝑌)
3027, 29eqtrd 2833 . 2 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌)
31 simpl 486 . . . 4 ((𝑋𝑉𝑌𝑉) → 𝑋𝑉)
32 ccatw2s1p1 13986 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ 𝑋𝑉) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋)
331, 12, 31, 32syl2an3an 1419 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋)
34333adant3 1129 . 2 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋)
3518, 30, 343jca 1125 1 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  1c1 10527   + caddc 10529  cmin 10859  2c2 11680  3c3 11681  cuz 12231  chash 13686  Word cword 13857   ++ cconcat 13913  ⟨“cs1 13940   prefix cpfx 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024
This theorem is referenced by:  numclwwlk1lem2foa  28139
  Copyright terms: Public domain W3C validator