MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2foalem Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2foalem 28715
Description: Lemma for numclwwlk1lem2foa 28718. (Contributed by AV, 29-May-2021.) (Revised by AV, 1-Nov-2022.)
Assertion
Ref Expression
numclwwlk1lem2foalem (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))

Proof of Theorem numclwwlk1lem2foalem
StepHypRef Expression
1 simpl 483 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) → 𝑊 ∈ Word 𝑉)
2 s1cl 14307 . . . . . . . 8 (𝑋𝑉 → ⟨“𝑋”⟩ ∈ Word 𝑉)
3 s1cl 14307 . . . . . . . 8 (𝑌𝑉 → ⟨“𝑌”⟩ ∈ Word 𝑉)
41, 2, 33anim123i 1150 . . . . . . 7 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ 𝑋𝑉𝑌𝑉) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑋”⟩ ∈ Word 𝑉 ∧ ⟨“𝑌”⟩ ∈ Word 𝑉))
543expb 1119 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑋”⟩ ∈ Word 𝑉 ∧ ⟨“𝑌”⟩ ∈ Word 𝑉))
6 ccatass 14293 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑋”⟩ ∈ Word 𝑉 ∧ ⟨“𝑌”⟩ ∈ Word 𝑉) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) = (𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)))
75, 6syl 17 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) = (𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)))
87oveq1d 7290 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = ((𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)) prefix (𝑁 − 2)))
91adantr 481 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → 𝑊 ∈ Word 𝑉)
10 ccat2s1cl 14323 . . . . . 6 ((𝑋𝑉𝑌𝑉) → (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩) ∈ Word 𝑉)
1110adantl 482 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩) ∈ Word 𝑉)
12 simpr 485 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) → (♯‘𝑊) = (𝑁 − 2))
1312eqcomd 2744 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑁 − 2) = (♯‘𝑊))
1413adantr 481 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (𝑁 − 2) = (♯‘𝑊))
15 pfxccatid 14454 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ (𝑁 − 2) = (♯‘𝑊)) → ((𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)) prefix (𝑁 − 2)) = 𝑊)
169, 11, 14, 15syl3anc 1370 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → ((𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)) prefix (𝑁 − 2)) = 𝑊)
178, 16eqtrd 2778 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊)
18173adant3 1131 . 2 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊)
19 1e2m1 12100 . . . . . . 7 1 = (2 − 1)
2019oveq2i 7286 . . . . . 6 (𝑁 − 1) = (𝑁 − (2 − 1))
21 eluzelcn 12594 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
22 2cnd 12051 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℂ)
23 1cnd 10970 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 1 ∈ ℂ)
2421, 22, 23subsubd 11360 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
2520, 24eqtrid 2790 . . . . 5 (𝑁 ∈ (ℤ‘3) → (𝑁 − 1) = ((𝑁 − 2) + 1))
26253ad2ant3 1134 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (𝑁 − 1) = ((𝑁 − 2) + 1))
2726fveq2d 6778 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((𝑁 − 2) + 1)))
28 ccatw2s1p2 14348 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((𝑁 − 2) + 1)) = 𝑌)
29283adant3 1131 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((𝑁 − 2) + 1)) = 𝑌)
3027, 29eqtrd 2778 . 2 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌)
31 simpl 483 . . . 4 ((𝑋𝑉𝑌𝑉) → 𝑋𝑉)
32 ccatw2s1p1 14346 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2) ∧ 𝑋𝑉) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋)
331, 12, 31, 32syl2an3an 1421 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋)
34333adant3 1131 . 2 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋)
3518, 30, 343jca 1127 1 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 − 2)) ∧ (𝑋𝑉𝑌𝑉) ∧ 𝑁 ∈ (ℤ‘3)) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) prefix (𝑁 − 2)) = 𝑊 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 1)) = 𝑌 ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 − 2)) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  1c1 10872   + caddc 10874  cmin 11205  2c2 12028  3c3 12029  cuz 12582  chash 14044  Word cword 14217   ++ cconcat 14273  ⟨“cs1 14300   prefix cpfx 14383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384
This theorem is referenced by:  numclwwlk1lem2foa  28718
  Copyright terms: Public domain W3C validator