Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝑅 ∈ CRing) |
2 | 1 | adantr 480 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) → 𝑅 ∈ CRing) |
3 | | simpr 484 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin) |
4 | 3 | adantr 480 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) → 𝑁 ∈ Fin) |
5 | | simpl 482 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶) → 𝑀 ∈ 𝐵) |
6 | 5 | adantl 481 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) → 𝑀 ∈ 𝐵) |
7 | 2, 4, 6 | 3jca 1126 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) → (𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵)) |
8 | 7 | adantr 480 |
. . . 4
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 )) → (𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵)) |
9 | | id 22 |
. . . . . . . . . 10
⊢ ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 ) → (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 )) |
10 | | ifnefalse 4468 |
. . . . . . . . . . 11
⊢ (𝑖 ≠ 𝑗 → if(𝑖 = 𝑗, 𝑋, 0 ) = 0 ) |
11 | 10 | adantl 481 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin) ∧
(𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) → if(𝑖 = 𝑗, 𝑋, 0 ) = 0 ) |
12 | 9, 11 | sylan9eqr 2801 |
. . . . . . . . 9
⊢
(((((((𝑅 ∈
CRing ∧ 𝑁 ∈ Fin)
∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 )) → (𝑖𝑀𝑗) = 0 ) |
13 | 12 | exp31 419 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin) ∧
(𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑖 ≠ 𝑗 → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 ) → (𝑖𝑀𝑗) = 0 ))) |
14 | 13 | com23 86 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin) ∧
(𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 ) → (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 ))) |
15 | 14 | ralimdva 3102 |
. . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) ∧ 𝑖 ∈ 𝑁) → (∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 ) → ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 ))) |
16 | 15 | ralimdva 3102 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 ) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 ))) |
17 | 16 | imp 406 |
. . . 4
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 )) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) |
18 | | mdetdiag.d |
. . . . 5
⊢ 𝐷 = (𝑁 maDet 𝑅) |
19 | | mdetdiag.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
20 | | mdetdiag.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐴) |
21 | | mdetdiag.g |
. . . . 5
⊢ 𝐺 = (mulGrp‘𝑅) |
22 | | mdetdiag.0 |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
23 | 18, 19, 20, 21, 22 | mdetdiag 21656 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 ) → (𝐷‘𝑀) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))))) |
24 | 8, 17, 23 | sylc 65 |
. . 3
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 )) → (𝐷‘𝑀) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘)))) |
25 | | oveq1 7262 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → (𝑖𝑀𝑗) = (𝑘𝑀𝑗)) |
26 | | equequ1 2029 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑘 → (𝑖 = 𝑗 ↔ 𝑘 = 𝑗)) |
27 | 26 | ifbid 4479 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → if(𝑖 = 𝑗, 𝑋, 0 ) = if(𝑘 = 𝑗, 𝑋, 0 )) |
28 | 25, 27 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑘 → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 ) ↔ (𝑘𝑀𝑗) = if(𝑘 = 𝑗, 𝑋, 0 ))) |
29 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → (𝑘𝑀𝑗) = (𝑘𝑀𝑘)) |
30 | | equequ2 2030 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → (𝑘 = 𝑗 ↔ 𝑘 = 𝑘)) |
31 | 30 | ifbid 4479 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → if(𝑘 = 𝑗, 𝑋, 0 ) = if(𝑘 = 𝑘, 𝑋, 0 )) |
32 | 29, 31 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → ((𝑘𝑀𝑗) = if(𝑘 = 𝑗, 𝑋, 0 ) ↔ (𝑘𝑀𝑘) = if(𝑘 = 𝑘, 𝑋, 0 ))) |
33 | 28, 32 | rspc2v 3562 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 ) → (𝑘𝑀𝑘) = if(𝑘 = 𝑘, 𝑋, 0 ))) |
34 | 33 | anidms 566 |
. . . . . . . . 9
⊢ (𝑘 ∈ 𝑁 → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 ) → (𝑘𝑀𝑘) = if(𝑘 = 𝑘, 𝑋, 0 ))) |
35 | 34 | adantl 481 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) ∧ 𝑘 ∈ 𝑁) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 ) → (𝑘𝑀𝑘) = if(𝑘 = 𝑘, 𝑋, 0 ))) |
36 | 35 | imp 406 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin) ∧
(𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) ∧ 𝑘 ∈ 𝑁) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 )) → (𝑘𝑀𝑘) = if(𝑘 = 𝑘, 𝑋, 0 )) |
37 | | equid 2016 |
. . . . . . . 8
⊢ 𝑘 = 𝑘 |
38 | 37 | iftruei 4463 |
. . . . . . 7
⊢ if(𝑘 = 𝑘, 𝑋, 0 ) = 𝑋 |
39 | 36, 38 | eqtrdi 2795 |
. . . . . 6
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin) ∧
(𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) ∧ 𝑘 ∈ 𝑁) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 )) → (𝑘𝑀𝑘) = 𝑋) |
40 | 39 | an32s 648 |
. . . . 5
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin) ∧
(𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 )) ∧ 𝑘 ∈ 𝑁) → (𝑘𝑀𝑘) = 𝑋) |
41 | 40 | mpteq2dva 5170 |
. . . 4
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 )) → (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘)) = (𝑘 ∈ 𝑁 ↦ 𝑋)) |
42 | 41 | oveq2d 7271 |
. . 3
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 )) → (𝐺 Σg
(𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ 𝑋))) |
43 | 21 | crngmgp 19706 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
44 | | cmnmnd 19317 |
. . . . . . 7
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
45 | 43, 44 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝐺 ∈ Mnd) |
46 | 45 | adantr 480 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐺 ∈ Mnd) |
47 | | simpr 484 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝐶) |
48 | | mdetdiagid.c |
. . . . . . 7
⊢ 𝐶 = (Base‘𝑅) |
49 | 21, 48 | mgpbas 19641 |
. . . . . 6
⊢ 𝐶 = (Base‘𝐺) |
50 | | mdetdiagid.t |
. . . . . 6
⊢ · =
(.g‘𝐺) |
51 | 49, 50 | gsumconst 19450 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ 𝑋 ∈ 𝐶) → (𝐺 Σg (𝑘 ∈ 𝑁 ↦ 𝑋)) = ((♯‘𝑁) · 𝑋)) |
52 | 46, 3, 47, 51 | syl2an3an 1420 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) → (𝐺 Σg (𝑘 ∈ 𝑁 ↦ 𝑋)) = ((♯‘𝑁) · 𝑋)) |
53 | 52 | adantr 480 |
. . 3
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 )) → (𝐺 Σg
(𝑘 ∈ 𝑁 ↦ 𝑋)) = ((♯‘𝑁) · 𝑋)) |
54 | 24, 42, 53 | 3eqtrd 2782 |
. 2
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 )) → (𝐷‘𝑀) = ((♯‘𝑁) · 𝑋)) |
55 | 54 | ex 412 |
1
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶)) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑋, 0 ) → (𝐷‘𝑀) = ((♯‘𝑁) · 𝑋))) |