MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem2 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem2 27411
Description: Lemma 2 for gausslemma2d 27418. (Contributed by AV, 4-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem2 (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀   𝑥,𝑘
Allowed substitution hints:   𝑃(𝑘)   𝑅(𝑥)   𝑀(𝑘)

Proof of Theorem gausslemma2dlem2
StepHypRef Expression
1 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
2 oveq1 7438 . . . . . . 7 (𝑥 = 𝑘 → (𝑥 · 2) = (𝑘 · 2))
32breq1d 5153 . . . . . 6 (𝑥 = 𝑘 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑘 · 2) < (𝑃 / 2)))
42oveq2d 7447 . . . . . 6 (𝑥 = 𝑘 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑘 · 2)))
53, 2, 4ifbieq12d 4554 . . . . 5 (𝑥 = 𝑘 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
65adantl 481 . . . 4 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
7 elfz1b 13633 . . . . . . . 8 (𝑘 ∈ (1...𝑀) ↔ (𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑘𝑀))
8 nnre 12273 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
98adantr 480 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → 𝑘 ∈ ℝ)
10 nnre 12273 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1110adantl 481 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
12 2re 12340 . . . . . . . . . . . . 13 2 ∈ ℝ
13 2pos 12369 . . . . . . . . . . . . 13 0 < 2
1412, 13pm3.2i 470 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
1514a1i 11 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 ∈ ℝ ∧ 0 < 2))
16 lemul1 12119 . . . . . . . . . . 11 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑘𝑀 ↔ (𝑘 · 2) ≤ (𝑀 · 2)))
179, 11, 15, 16syl3anc 1373 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘𝑀 ↔ (𝑘 · 2) ≤ (𝑀 · 2)))
18 gausslemma2d.p . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ (ℙ ∖ {2}))
19 gausslemma2d.m . . . . . . . . . . . . . . 15 𝑀 = (⌊‘(𝑃 / 4))
2018, 19gausslemma2dlem0e 27404 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 · 2) < (𝑃 / 2))
2120adantl 481 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝜑) → (𝑀 · 2) < (𝑃 / 2))
2212a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 2 ∈ ℝ)
238, 22remulcld 11291 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 · 2) ∈ ℝ)
2423adantr 480 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘 · 2) ∈ ℝ)
2512a1i 11 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 2 ∈ ℝ)
2610, 25remulcld 11291 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑀 · 2) ∈ ℝ)
2726adantl 481 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀 · 2) ∈ ℝ)
2818gausslemma2dlem0a 27400 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ)
2928nnred 12281 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℝ)
3029rehalfcld 12513 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 / 2) ∈ ℝ)
31 lelttr 11351 . . . . . . . . . . . . . 14 (((𝑘 · 2) ∈ ℝ ∧ (𝑀 · 2) ∈ ℝ ∧ (𝑃 / 2) ∈ ℝ) → (((𝑘 · 2) ≤ (𝑀 · 2) ∧ (𝑀 · 2) < (𝑃 / 2)) → (𝑘 · 2) < (𝑃 / 2)))
3224, 27, 30, 31syl2an3an 1424 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝜑) → (((𝑘 · 2) ≤ (𝑀 · 2) ∧ (𝑀 · 2) < (𝑃 / 2)) → (𝑘 · 2) < (𝑃 / 2)))
3321, 32mpan2d 694 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝜑) → ((𝑘 · 2) ≤ (𝑀 · 2) → (𝑘 · 2) < (𝑃 / 2)))
3433ex 412 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝜑 → ((𝑘 · 2) ≤ (𝑀 · 2) → (𝑘 · 2) < (𝑃 / 2))))
3534com23 86 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝑘 · 2) ≤ (𝑀 · 2) → (𝜑 → (𝑘 · 2) < (𝑃 / 2))))
3617, 35sylbid 240 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘𝑀 → (𝜑 → (𝑘 · 2) < (𝑃 / 2))))
37363impia 1118 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑘𝑀) → (𝜑 → (𝑘 · 2) < (𝑃 / 2)))
387, 37sylbi 217 . . . . . . 7 (𝑘 ∈ (1...𝑀) → (𝜑 → (𝑘 · 2) < (𝑃 / 2)))
3938impcom 407 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑘 · 2) < (𝑃 / 2))
4039adantr 480 . . . . 5 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → (𝑘 · 2) < (𝑃 / 2))
4140iftrued 4533 . . . 4 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))) = (𝑘 · 2))
426, 41eqtrd 2777 . . 3 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = (𝑘 · 2))
4318, 19gausslemma2dlem0d 27403 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
4443nn0zd 12639 . . . . . 6 (𝜑𝑀 ∈ ℤ)
45 gausslemma2d.h . . . . . . . 8 𝐻 = ((𝑃 − 1) / 2)
4618, 45gausslemma2dlem0b 27401 . . . . . . 7 (𝜑𝐻 ∈ ℕ)
4746nnzd 12640 . . . . . 6 (𝜑𝐻 ∈ ℤ)
4818, 19, 45gausslemma2dlem0g 27406 . . . . . 6 (𝜑𝑀𝐻)
49 eluz2 12884 . . . . . 6 (𝐻 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑀𝐻))
5044, 47, 48, 49syl3anbrc 1344 . . . . 5 (𝜑𝐻 ∈ (ℤ𝑀))
51 fzss2 13604 . . . . 5 (𝐻 ∈ (ℤ𝑀) → (1...𝑀) ⊆ (1...𝐻))
5250, 51syl 17 . . . 4 (𝜑 → (1...𝑀) ⊆ (1...𝐻))
5352sselda 3983 . . 3 ((𝜑𝑘 ∈ (1...𝑀)) → 𝑘 ∈ (1...𝐻))
54 ovexd 7466 . . 3 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑘 · 2) ∈ V)
551, 42, 53, 54fvmptd2 7024 . 2 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑅𝑘) = (𝑘 · 2))
5655ralrimiva 3146 1 (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cdif 3948  wss 3951  ifcif 4525  {csn 4626   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  4c4 12323  cz 12613  cuz 12878  ...cfz 13547  cfl 13830  cprime 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fl 13832  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-prm 16709
This theorem is referenced by:  gausslemma2dlem6  27416
  Copyright terms: Public domain W3C validator