MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem2 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem2 26715
Description: Lemma 2 for gausslemma2d 26722. (Contributed by AV, 4-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem2 (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀   𝑥,𝑘
Allowed substitution hints:   𝑃(𝑘)   𝑅(𝑥)   𝑀(𝑘)

Proof of Theorem gausslemma2dlem2
StepHypRef Expression
1 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
2 oveq1 7364 . . . . . . 7 (𝑥 = 𝑘 → (𝑥 · 2) = (𝑘 · 2))
32breq1d 5115 . . . . . 6 (𝑥 = 𝑘 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑘 · 2) < (𝑃 / 2)))
42oveq2d 7373 . . . . . 6 (𝑥 = 𝑘 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑘 · 2)))
53, 2, 4ifbieq12d 4514 . . . . 5 (𝑥 = 𝑘 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
65adantl 482 . . . 4 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
7 elfz1b 13510 . . . . . . . 8 (𝑘 ∈ (1...𝑀) ↔ (𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑘𝑀))
8 nnre 12160 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
98adantr 481 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → 𝑘 ∈ ℝ)
10 nnre 12160 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1110adantl 482 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
12 2re 12227 . . . . . . . . . . . . 13 2 ∈ ℝ
13 2pos 12256 . . . . . . . . . . . . 13 0 < 2
1412, 13pm3.2i 471 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
1514a1i 11 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 ∈ ℝ ∧ 0 < 2))
16 lemul1 12007 . . . . . . . . . . 11 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑘𝑀 ↔ (𝑘 · 2) ≤ (𝑀 · 2)))
179, 11, 15, 16syl3anc 1371 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘𝑀 ↔ (𝑘 · 2) ≤ (𝑀 · 2)))
18 gausslemma2d.p . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ (ℙ ∖ {2}))
19 gausslemma2d.m . . . . . . . . . . . . . . 15 𝑀 = (⌊‘(𝑃 / 4))
2018, 19gausslemma2dlem0e 26708 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 · 2) < (𝑃 / 2))
2120adantl 482 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝜑) → (𝑀 · 2) < (𝑃 / 2))
2212a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 2 ∈ ℝ)
238, 22remulcld 11185 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 · 2) ∈ ℝ)
2423adantr 481 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘 · 2) ∈ ℝ)
2512a1i 11 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 2 ∈ ℝ)
2610, 25remulcld 11185 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑀 · 2) ∈ ℝ)
2726adantl 482 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀 · 2) ∈ ℝ)
2818gausslemma2dlem0a 26704 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ)
2928nnred 12168 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℝ)
3029rehalfcld 12400 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 / 2) ∈ ℝ)
31 lelttr 11245 . . . . . . . . . . . . . 14 (((𝑘 · 2) ∈ ℝ ∧ (𝑀 · 2) ∈ ℝ ∧ (𝑃 / 2) ∈ ℝ) → (((𝑘 · 2) ≤ (𝑀 · 2) ∧ (𝑀 · 2) < (𝑃 / 2)) → (𝑘 · 2) < (𝑃 / 2)))
3224, 27, 30, 31syl2an3an 1422 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝜑) → (((𝑘 · 2) ≤ (𝑀 · 2) ∧ (𝑀 · 2) < (𝑃 / 2)) → (𝑘 · 2) < (𝑃 / 2)))
3321, 32mpan2d 692 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝜑) → ((𝑘 · 2) ≤ (𝑀 · 2) → (𝑘 · 2) < (𝑃 / 2)))
3433ex 413 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝜑 → ((𝑘 · 2) ≤ (𝑀 · 2) → (𝑘 · 2) < (𝑃 / 2))))
3534com23 86 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝑘 · 2) ≤ (𝑀 · 2) → (𝜑 → (𝑘 · 2) < (𝑃 / 2))))
3617, 35sylbid 239 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑘𝑀 → (𝜑 → (𝑘 · 2) < (𝑃 / 2))))
37363impia 1117 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑘𝑀) → (𝜑 → (𝑘 · 2) < (𝑃 / 2)))
387, 37sylbi 216 . . . . . . 7 (𝑘 ∈ (1...𝑀) → (𝜑 → (𝑘 · 2) < (𝑃 / 2)))
3938impcom 408 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑘 · 2) < (𝑃 / 2))
4039adantr 481 . . . . 5 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → (𝑘 · 2) < (𝑃 / 2))
4140iftrued 4494 . . . 4 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))) = (𝑘 · 2))
426, 41eqtrd 2776 . . 3 (((𝜑𝑘 ∈ (1...𝑀)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = (𝑘 · 2))
4318, 19gausslemma2dlem0d 26707 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
4443nn0zd 12525 . . . . . 6 (𝜑𝑀 ∈ ℤ)
45 gausslemma2d.h . . . . . . . 8 𝐻 = ((𝑃 − 1) / 2)
4618, 45gausslemma2dlem0b 26705 . . . . . . 7 (𝜑𝐻 ∈ ℕ)
4746nnzd 12526 . . . . . 6 (𝜑𝐻 ∈ ℤ)
4818, 19, 45gausslemma2dlem0g 26710 . . . . . 6 (𝜑𝑀𝐻)
49 eluz2 12769 . . . . . 6 (𝐻 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑀𝐻))
5044, 47, 48, 49syl3anbrc 1343 . . . . 5 (𝜑𝐻 ∈ (ℤ𝑀))
51 fzss2 13481 . . . . 5 (𝐻 ∈ (ℤ𝑀) → (1...𝑀) ⊆ (1...𝐻))
5250, 51syl 17 . . . 4 (𝜑 → (1...𝑀) ⊆ (1...𝐻))
5352sselda 3944 . . 3 ((𝜑𝑘 ∈ (1...𝑀)) → 𝑘 ∈ (1...𝐻))
54 ovexd 7392 . . 3 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑘 · 2) ∈ V)
551, 42, 53, 54fvmptd2 6956 . 2 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑅𝑘) = (𝑘 · 2))
5655ralrimiva 3143 1 (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cdif 3907  wss 3910  ifcif 4486  {csn 4586   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  4c4 12210  cz 12499  cuz 12763  ...cfz 13424  cfl 13695  cprime 16547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fl 13697  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-prm 16548
This theorem is referenced by:  gausslemma2dlem6  26720
  Copyright terms: Public domain W3C validator