MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  digit2 Structured version   Visualization version   GIF version

Theorem digit2 14161
Description: Two ways to express the 𝐾 th digit in the decimal (when base 𝐵 = 10) expansion of a number 𝐴. 𝐾 = 1 corresponds to the first digit after the decimal point. (Contributed by NM, 25-Dec-2008.)
Assertion
Ref Expression
digit2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))

Proof of Theorem digit2
StepHypRef Expression
1 nnre 12153 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
2 nnnn0 12409 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
3 reexpcl 14003 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℝ)
41, 2, 3syl2an 596 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℝ)
5 remulcl 11113 . . . . . 6 (((𝐵𝐾) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
64, 5stoic3 1776 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
763comr 1125 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
8 reflcl 13718 . . . 4 (((𝐵𝐾) · 𝐴) ∈ ℝ → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
97, 8syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
10 nnrp 12923 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
11103ad2ant2 1134 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℝ+)
12 modval 13793 . . 3 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)))))
139, 11, 12syl2anc 584 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)))))
14 simp2 1137 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℕ)
15 fldiv 13782 . . . . . 6 ((((𝐵𝐾) · 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℕ) → (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)) = (⌊‘(((𝐵𝐾) · 𝐴) / 𝐵)))
167, 14, 15syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)) = (⌊‘(((𝐵𝐾) · 𝐴) / 𝐵)))
17 nncn 12154 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
18 expcl 14004 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℂ)
1917, 2, 18syl2an 596 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℂ)
20193adant1 1130 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℂ)
21 recn 11118 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
22213ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐴 ∈ ℂ)
23 nnne0 12180 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
2417, 23jca 511 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
25243ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
26 div23 11816 . . . . . . . 8 (((𝐵𝐾) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐵𝐾) · 𝐴) / 𝐵) = (((𝐵𝐾) / 𝐵) · 𝐴))
2720, 22, 25, 26syl3anc 1373 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (((𝐵𝐾) · 𝐴) / 𝐵) = (((𝐵𝐾) / 𝐵) · 𝐴))
28 nnz 12510 . . . . . . . . . 10 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
29 expm1 14037 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝐵↑(𝐾 − 1)) = ((𝐵𝐾) / 𝐵))
3017, 23, 28, 29syl2an3an 1424 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) = ((𝐵𝐾) / 𝐵))
31303adant1 1130 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) = ((𝐵𝐾) / 𝐵))
3231oveq1d 7368 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝐵↑(𝐾 − 1)) · 𝐴) = (((𝐵𝐾) / 𝐵) · 𝐴))
3327, 32eqtr4d 2767 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (((𝐵𝐾) · 𝐴) / 𝐵) = ((𝐵↑(𝐾 − 1)) · 𝐴))
3433fveq2d 6830 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘(((𝐵𝐾) · 𝐴) / 𝐵)) = (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))
3516, 34eqtrd 2764 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)) = (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))
3635oveq2d 7369 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵))) = (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))))
3736oveq2d 7369 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)))) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
3813, 37eqtrd 2764 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   · cmul 11033  cmin 11365   / cdiv 11795  cn 12146  0cn0 12402  cz 12489  +crp 12911  cfl 13712   mod cmo 13791  cexp 13986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987
This theorem is referenced by:  digit1  14162
  Copyright terms: Public domain W3C validator