MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  digit2 Structured version   Visualization version   GIF version

Theorem digit2 14201
Description: Two ways to express the 𝐾 th digit in the decimal (when base 𝐵 = 10) expansion of a number 𝐴. 𝐾 = 1 corresponds to the first digit after the decimal point. (Contributed by NM, 25-Dec-2008.)
Assertion
Ref Expression
digit2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))

Proof of Theorem digit2
StepHypRef Expression
1 nnre 12193 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
2 nnnn0 12449 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
3 reexpcl 14043 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℝ)
41, 2, 3syl2an 596 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℝ)
5 remulcl 11153 . . . . . 6 (((𝐵𝐾) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
64, 5stoic3 1776 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
763comr 1125 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
8 reflcl 13758 . . . 4 (((𝐵𝐾) · 𝐴) ∈ ℝ → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
97, 8syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
10 nnrp 12963 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
11103ad2ant2 1134 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℝ+)
12 modval 13833 . . 3 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)))))
139, 11, 12syl2anc 584 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)))))
14 simp2 1137 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℕ)
15 fldiv 13822 . . . . . 6 ((((𝐵𝐾) · 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℕ) → (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)) = (⌊‘(((𝐵𝐾) · 𝐴) / 𝐵)))
167, 14, 15syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)) = (⌊‘(((𝐵𝐾) · 𝐴) / 𝐵)))
17 nncn 12194 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
18 expcl 14044 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℂ)
1917, 2, 18syl2an 596 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℂ)
20193adant1 1130 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℂ)
21 recn 11158 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
22213ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐴 ∈ ℂ)
23 nnne0 12220 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
2417, 23jca 511 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
25243ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
26 div23 11856 . . . . . . . 8 (((𝐵𝐾) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐵𝐾) · 𝐴) / 𝐵) = (((𝐵𝐾) / 𝐵) · 𝐴))
2720, 22, 25, 26syl3anc 1373 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (((𝐵𝐾) · 𝐴) / 𝐵) = (((𝐵𝐾) / 𝐵) · 𝐴))
28 nnz 12550 . . . . . . . . . 10 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
29 expm1 14077 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝐵↑(𝐾 − 1)) = ((𝐵𝐾) / 𝐵))
3017, 23, 28, 29syl2an3an 1424 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) = ((𝐵𝐾) / 𝐵))
31303adant1 1130 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) = ((𝐵𝐾) / 𝐵))
3231oveq1d 7402 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝐵↑(𝐾 − 1)) · 𝐴) = (((𝐵𝐾) / 𝐵) · 𝐴))
3327, 32eqtr4d 2767 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (((𝐵𝐾) · 𝐴) / 𝐵) = ((𝐵↑(𝐾 − 1)) · 𝐴))
3433fveq2d 6862 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘(((𝐵𝐾) · 𝐴) / 𝐵)) = (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))
3516, 34eqtrd 2764 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)) = (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))
3635oveq2d 7403 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵))) = (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))))
3736oveq2d 7403 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)))) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
3813, 37eqtrd 2764 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  +crp 12951  cfl 13752   mod cmo 13831  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027
This theorem is referenced by:  digit1  14202
  Copyright terms: Public domain W3C validator