MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  digit2 Structured version   Visualization version   GIF version

Theorem digit2 13597
Description: Two ways to express the 𝐾 th digit in the decimal (when base 𝐵 = 10) expansion of a number 𝐴. 𝐾 = 1 corresponds to the first digit after the decimal point. (Contributed by NM, 25-Dec-2008.)
Assertion
Ref Expression
digit2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))

Proof of Theorem digit2
StepHypRef Expression
1 nnre 11636 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
2 nnnn0 11896 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
3 reexpcl 13446 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℝ)
41, 2, 3syl2an 598 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℝ)
5 remulcl 10615 . . . . . 6 (((𝐵𝐾) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
64, 5stoic3 1778 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
763comr 1122 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
8 reflcl 13165 . . . 4 (((𝐵𝐾) · 𝐴) ∈ ℝ → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
97, 8syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
10 nnrp 12392 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
11103ad2ant2 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℝ+)
12 modval 13238 . . 3 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)))))
139, 11, 12syl2anc 587 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)))))
14 simp2 1134 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℕ)
15 fldiv 13227 . . . . . 6 ((((𝐵𝐾) · 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℕ) → (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)) = (⌊‘(((𝐵𝐾) · 𝐴) / 𝐵)))
167, 14, 15syl2anc 587 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)) = (⌊‘(((𝐵𝐾) · 𝐴) / 𝐵)))
17 nncn 11637 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
18 expcl 13447 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℂ)
1917, 2, 18syl2an 598 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℂ)
20193adant1 1127 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℂ)
21 recn 10620 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
22213ad2ant1 1130 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐴 ∈ ℂ)
23 nnne0 11663 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
2417, 23jca 515 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
25243ad2ant2 1131 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
26 div23 11310 . . . . . . . 8 (((𝐵𝐾) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐵𝐾) · 𝐴) / 𝐵) = (((𝐵𝐾) / 𝐵) · 𝐴))
2720, 22, 25, 26syl3anc 1368 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (((𝐵𝐾) · 𝐴) / 𝐵) = (((𝐵𝐾) / 𝐵) · 𝐴))
28 nnz 11996 . . . . . . . . . 10 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
29 expm1 13479 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝐵↑(𝐾 − 1)) = ((𝐵𝐾) / 𝐵))
3017, 23, 28, 29syl2an3an 1419 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) = ((𝐵𝐾) / 𝐵))
31303adant1 1127 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) = ((𝐵𝐾) / 𝐵))
3231oveq1d 7154 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝐵↑(𝐾 − 1)) · 𝐴) = (((𝐵𝐾) / 𝐵) · 𝐴))
3327, 32eqtr4d 2839 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (((𝐵𝐾) · 𝐴) / 𝐵) = ((𝐵↑(𝐾 − 1)) · 𝐴))
3433fveq2d 6653 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘(((𝐵𝐾) · 𝐴) / 𝐵)) = (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))
3516, 34eqtrd 2836 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)) = (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))
3635oveq2d 7155 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵))) = (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))))
3736oveq2d 7155 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)))) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
3813, 37eqtrd 2836 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530  1c1 10531   · cmul 10535  cmin 10863   / cdiv 11290  cn 11629  0cn0 11889  cz 11973  +crp 12381  cfl 13159   mod cmo 13236  cexp 13429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430
This theorem is referenced by:  digit1  13598
  Copyright terms: Public domain W3C validator