MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  digit2 Structured version   Visualization version   GIF version

Theorem digit2 13415
Description: Two ways to express the 𝐾 th digit in the decimal (when base 𝐵 = 10) expansion of a number 𝐴. 𝐾 = 1 corresponds to the first digit after the decimal point. (Contributed by NM, 25-Dec-2008.)
Assertion
Ref Expression
digit2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))

Proof of Theorem digit2
StepHypRef Expression
1 nnre 11449 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
2 nnnn0 11718 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
3 reexpcl 13264 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℝ)
41, 2, 3syl2an 586 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℝ)
5 remulcl 10422 . . . . . 6 (((𝐵𝐾) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
64, 5stoic3 1739 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
763comr 1105 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
8 reflcl 12984 . . . 4 (((𝐵𝐾) · 𝐴) ∈ ℝ → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
97, 8syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
10 nnrp 12220 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
11103ad2ant2 1114 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℝ+)
12 modval 13057 . . 3 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)))))
139, 11, 12syl2anc 576 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)))))
14 simp2 1117 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℕ)
15 fldiv 13046 . . . . . 6 ((((𝐵𝐾) · 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℕ) → (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)) = (⌊‘(((𝐵𝐾) · 𝐴) / 𝐵)))
167, 14, 15syl2anc 576 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)) = (⌊‘(((𝐵𝐾) · 𝐴) / 𝐵)))
17 nncn 11450 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
18 expcl 13265 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℂ)
1917, 2, 18syl2an 586 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℂ)
20193adant1 1110 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℂ)
21 recn 10427 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
22213ad2ant1 1113 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐴 ∈ ℂ)
23 nnne0 11477 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
2417, 23jca 504 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
25243ad2ant2 1114 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
26 div23 11120 . . . . . . . 8 (((𝐵𝐾) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐵𝐾) · 𝐴) / 𝐵) = (((𝐵𝐾) / 𝐵) · 𝐴))
2720, 22, 25, 26syl3anc 1351 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (((𝐵𝐾) · 𝐴) / 𝐵) = (((𝐵𝐾) / 𝐵) · 𝐴))
28 nnz 11820 . . . . . . . . . 10 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
29 expm1 13297 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝐵↑(𝐾 − 1)) = ((𝐵𝐾) / 𝐵))
3017, 23, 28, 29syl2an3an 1402 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) = ((𝐵𝐾) / 𝐵))
31303adant1 1110 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) = ((𝐵𝐾) / 𝐵))
3231oveq1d 6993 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝐵↑(𝐾 − 1)) · 𝐴) = (((𝐵𝐾) / 𝐵) · 𝐴))
3327, 32eqtr4d 2817 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (((𝐵𝐾) · 𝐴) / 𝐵) = ((𝐵↑(𝐾 − 1)) · 𝐴))
3433fveq2d 6505 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘(((𝐵𝐾) · 𝐴) / 𝐵)) = (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))
3516, 34eqtrd 2814 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)) = (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))
3635oveq2d 6994 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵))) = (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))))
3736oveq2d 6994 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)))) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
3813, 37eqtrd 2814 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2967  cfv 6190  (class class class)co 6978  cc 10335  cr 10336  0cc0 10337  1c1 10338   · cmul 10342  cmin 10672   / cdiv 11100  cn 11441  0cn0 11710  cz 11796  +crp 12207  cfl 12978   mod cmo 13055  cexp 13247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-sup 8703  df-inf 8704  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-n0 11711  df-z 11797  df-uz 12062  df-rp 12208  df-fl 12980  df-mod 13056  df-seq 13188  df-exp 13248
This theorem is referenced by:  digit1  13416
  Copyright terms: Public domain W3C validator