MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  digit2 Structured version   Visualization version   GIF version

Theorem digit2 13600
Description: Two ways to express the 𝐾 th digit in the decimal (when base 𝐵 = 10) expansion of a number 𝐴. 𝐾 = 1 corresponds to the first digit after the decimal point. (Contributed by NM, 25-Dec-2008.)
Assertion
Ref Expression
digit2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))

Proof of Theorem digit2
StepHypRef Expression
1 nnre 11647 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
2 nnnn0 11907 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
3 reexpcl 13449 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℝ)
41, 2, 3syl2an 597 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℝ)
5 remulcl 10624 . . . . . 6 (((𝐵𝐾) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
64, 5stoic3 1777 . . . . 5 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
763comr 1121 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝐵𝐾) · 𝐴) ∈ ℝ)
8 reflcl 13169 . . . 4 (((𝐵𝐾) · 𝐴) ∈ ℝ → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
97, 8syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ)
10 nnrp 12403 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
11103ad2ant2 1130 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℝ+)
12 modval 13242 . . 3 (((⌊‘((𝐵𝐾) · 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)))))
139, 11, 12syl2anc 586 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)))))
14 simp2 1133 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐵 ∈ ℕ)
15 fldiv 13231 . . . . . 6 ((((𝐵𝐾) · 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℕ) → (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)) = (⌊‘(((𝐵𝐾) · 𝐴) / 𝐵)))
167, 14, 15syl2anc 586 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)) = (⌊‘(((𝐵𝐾) · 𝐴) / 𝐵)))
17 nncn 11648 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
18 expcl 13450 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℂ)
1917, 2, 18syl2an 597 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℂ)
20193adant1 1126 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵𝐾) ∈ ℂ)
21 recn 10629 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
22213ad2ant1 1129 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → 𝐴 ∈ ℂ)
23 nnne0 11674 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
2417, 23jca 514 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
25243ad2ant2 1130 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
26 div23 11319 . . . . . . . 8 (((𝐵𝐾) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐵𝐾) · 𝐴) / 𝐵) = (((𝐵𝐾) / 𝐵) · 𝐴))
2720, 22, 25, 26syl3anc 1367 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (((𝐵𝐾) · 𝐴) / 𝐵) = (((𝐵𝐾) / 𝐵) · 𝐴))
28 nnz 12007 . . . . . . . . . 10 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
29 expm1 13482 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝐵↑(𝐾 − 1)) = ((𝐵𝐾) / 𝐵))
3017, 23, 28, 29syl2an3an 1418 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) = ((𝐵𝐾) / 𝐵))
31303adant1 1126 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵↑(𝐾 − 1)) = ((𝐵𝐾) / 𝐵))
3231oveq1d 7173 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝐵↑(𝐾 − 1)) · 𝐴) = (((𝐵𝐾) / 𝐵) · 𝐴))
3327, 32eqtr4d 2861 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (((𝐵𝐾) · 𝐴) / 𝐵) = ((𝐵↑(𝐾 − 1)) · 𝐴))
3433fveq2d 6676 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘(((𝐵𝐾) · 𝐴) / 𝐵)) = (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))
3516, 34eqtrd 2858 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)) = (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))
3635oveq2d 7174 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵))) = (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴))))
3736oveq2d 7174 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((⌊‘((𝐵𝐾) · 𝐴)) / 𝐵)))) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
3813, 37eqtrd 2858 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((⌊‘((𝐵𝐾) · 𝐴)) mod 𝐵) = ((⌊‘((𝐵𝐾) · 𝐴)) − (𝐵 · (⌊‘((𝐵↑(𝐾 − 1)) · 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   · cmul 10544  cmin 10872   / cdiv 11299  cn 11640  0cn0 11900  cz 11984  +crp 12392  cfl 13163   mod cmo 13240  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433
This theorem is referenced by:  digit1  13601
  Copyright terms: Public domain W3C validator