MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvlem Structured version   Visualization version   GIF version

Theorem dvcnvlem 24046
Description: Lemma for dvcnvre 24089. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
dvcnv.j 𝐽 = (TopOpen‘ℂfld)
dvcnv.k 𝐾 = (𝐽t 𝑆)
dvcnv.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvcnv.y (𝜑𝑌𝐾)
dvcnv.f (𝜑𝐹:𝑋1-1-onto𝑌)
dvcnv.i (𝜑𝐹 ∈ (𝑌cn𝑋))
dvcnv.d (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvcnv.z (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹))
dvcnv.c (𝜑𝐶𝑋)
Assertion
Ref Expression
dvcnvlem (𝜑 → (𝐹𝐶)(𝑆 D 𝐹)(1 / ((𝑆 D 𝐹)‘𝐶)))

Proof of Theorem dvcnvlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcnv.f . . . . 5 (𝜑𝐹:𝑋1-1-onto𝑌)
2 f1of 6324 . . . . 5 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
31, 2syl 17 . . . 4 (𝜑𝐹:𝑋𝑌)
4 dvcnv.c . . . 4 (𝜑𝐶𝑋)
53, 4ffvelrnd 6554 . . 3 (𝜑 → (𝐹𝐶) ∈ 𝑌)
6 dvcnv.k . . . . . 6 𝐾 = (𝐽t 𝑆)
7 dvcnv.j . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
87cnfldtopon 22881 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
9 dvcnv.s . . . . . . . 8 (𝜑𝑆 ∈ {ℝ, ℂ})
10 recnprss 23975 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
119, 10syl 17 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
12 resttopon 21261 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
138, 11, 12sylancr 581 . . . . . 6 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
146, 13syl5eqel 2848 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑆))
15 topontop 21013 . . . . 5 (𝐾 ∈ (TopOn‘𝑆) → 𝐾 ∈ Top)
1614, 15syl 17 . . . 4 (𝜑𝐾 ∈ Top)
17 dvcnv.y . . . 4 (𝜑𝑌𝐾)
18 isopn3i 21182 . . . 4 ((𝐾 ∈ Top ∧ 𝑌𝐾) → ((int‘𝐾)‘𝑌) = 𝑌)
1916, 17, 18syl2anc 579 . . 3 (𝜑 → ((int‘𝐾)‘𝑌) = 𝑌)
205, 19eleqtrrd 2847 . 2 (𝜑 → (𝐹𝐶) ∈ ((int‘𝐾)‘𝑌))
21 f1ocnv 6336 . . . . . . . . 9 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
22 f1of 6324 . . . . . . . . 9 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
231, 21, 223syl 18 . . . . . . . 8 (𝜑𝐹:𝑌𝑋)
24 eldifi 3896 . . . . . . . 8 (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) → 𝑧𝑌)
25 ffvelrn 6551 . . . . . . . 8 ((𝐹:𝑌𝑋𝑧𝑌) → (𝐹𝑧) ∈ 𝑋)
2623, 24, 25syl2an 589 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (𝐹𝑧) ∈ 𝑋)
2726anim1i 608 . . . . . 6 (((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) ∧ (𝐹𝑧) ≠ 𝐶) → ((𝐹𝑧) ∈ 𝑋 ∧ (𝐹𝑧) ≠ 𝐶))
28 eldifsn 4474 . . . . . 6 ((𝐹𝑧) ∈ (𝑋 ∖ {𝐶}) ↔ ((𝐹𝑧) ∈ 𝑋 ∧ (𝐹𝑧) ≠ 𝐶))
2927, 28sylibr 225 . . . . 5 (((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) ∧ (𝐹𝑧) ≠ 𝐶) → (𝐹𝑧) ∈ (𝑋 ∖ {𝐶}))
3029anasss 458 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ∧ (𝐹𝑧) ≠ 𝐶)) → (𝐹𝑧) ∈ (𝑋 ∖ {𝐶}))
31 eldifi 3896 . . . . . . 7 (𝑦 ∈ (𝑋 ∖ {𝐶}) → 𝑦𝑋)
32 dvcnv.d . . . . . . . . . 10 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
33 dvbsss 23973 . . . . . . . . . 10 dom (𝑆 D 𝐹) ⊆ 𝑆
3432, 33syl6eqssr 3818 . . . . . . . . 9 (𝜑𝑋𝑆)
3534, 11sstrd 3773 . . . . . . . 8 (𝜑𝑋 ⊆ ℂ)
3635sselda 3763 . . . . . . 7 ((𝜑𝑦𝑋) → 𝑦 ∈ ℂ)
3731, 36sylan2 586 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝑦 ∈ ℂ)
3834, 4sseldd 3764 . . . . . . . 8 (𝜑𝐶𝑆)
3911, 38sseldd 3764 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
4039adantr 472 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝐶 ∈ ℂ)
4137, 40subcld 10651 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝑦𝐶) ∈ ℂ)
42 toponss 21027 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑆) ∧ 𝑌𝐾) → 𝑌𝑆)
4314, 17, 42syl2anc 579 . . . . . . . . 9 (𝜑𝑌𝑆)
4443, 11sstrd 3773 . . . . . . . 8 (𝜑𝑌 ⊆ ℂ)
453, 44fssd 6239 . . . . . . 7 (𝜑𝐹:𝑋⟶ℂ)
46 ffvelrn 6551 . . . . . . 7 ((𝐹:𝑋⟶ℂ ∧ 𝑦𝑋) → (𝐹𝑦) ∈ ℂ)
4745, 31, 46syl2an 589 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝑦) ∈ ℂ)
4844, 5sseldd 3764 . . . . . . 7 (𝜑 → (𝐹𝐶) ∈ ℂ)
4948adantr 472 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
5047, 49subcld 10651 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑦) − (𝐹𝐶)) ∈ ℂ)
51 eldifsni 4478 . . . . . . 7 (𝑦 ∈ (𝑋 ∖ {𝐶}) → 𝑦𝐶)
5251adantl 473 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝑦𝐶)
5347, 49subeq0ad 10661 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) = 0 ↔ (𝐹𝑦) = (𝐹𝐶)))
54 f1of1 6323 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
551, 54syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑋1-1𝑌)
5655adantr 472 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝐹:𝑋1-1𝑌)
5731adantl 473 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝑦𝑋)
584adantr 472 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝐶𝑋)
59 f1fveq 6715 . . . . . . . . 9 ((𝐹:𝑋1-1𝑌 ∧ (𝑦𝑋𝐶𝑋)) → ((𝐹𝑦) = (𝐹𝐶) ↔ 𝑦 = 𝐶))
6056, 57, 58, 59syl12anc 865 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑦) = (𝐹𝐶) ↔ 𝑦 = 𝐶))
6153, 60bitrd 270 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) = 0 ↔ 𝑦 = 𝐶))
6261necon3bid 2981 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) ≠ 0 ↔ 𝑦𝐶))
6352, 62mpbird 248 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑦) − (𝐹𝐶)) ≠ 0)
6441, 50, 63divcld 11060 . . . 4 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶))) ∈ ℂ)
65 limcresi 23956 . . . . . 6 (𝐹 lim (𝐹𝐶)) ⊆ ((𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) lim (𝐹𝐶))
6623feqmptd 6442 . . . . . . . . 9 (𝜑𝐹 = (𝑧𝑌 ↦ (𝐹𝑧)))
6766reseq1d 5566 . . . . . . . 8 (𝜑 → (𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) = ((𝑧𝑌 ↦ (𝐹𝑧)) ↾ (𝑌 ∖ {(𝐹𝐶)})))
68 difss 3901 . . . . . . . . 9 (𝑌 ∖ {(𝐹𝐶)}) ⊆ 𝑌
69 resmpt 5628 . . . . . . . . 9 ((𝑌 ∖ {(𝐹𝐶)}) ⊆ 𝑌 → ((𝑧𝑌 ↦ (𝐹𝑧)) ↾ (𝑌 ∖ {(𝐹𝐶)})) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)))
7068, 69ax-mp 5 . . . . . . . 8 ((𝑧𝑌 ↦ (𝐹𝑧)) ↾ (𝑌 ∖ {(𝐹𝐶)})) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧))
7167, 70syl6eq 2815 . . . . . . 7 (𝜑 → (𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)))
7271oveq1d 6861 . . . . . 6 (𝜑 → ((𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) lim (𝐹𝐶)) = ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)) lim (𝐹𝐶)))
7365, 72syl5sseq 3815 . . . . 5 (𝜑 → (𝐹 lim (𝐹𝐶)) ⊆ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)) lim (𝐹𝐶)))
74 f1ocnvfv1 6728 . . . . . . 7 ((𝐹:𝑋1-1-onto𝑌𝐶𝑋) → (𝐹‘(𝐹𝐶)) = 𝐶)
751, 4, 74syl2anc 579 . . . . . 6 (𝜑 → (𝐹‘(𝐹𝐶)) = 𝐶)
76 dvcnv.i . . . . . . 7 (𝜑𝐹 ∈ (𝑌cn𝑋))
7776, 5cnlimci 23960 . . . . . 6 (𝜑 → (𝐹‘(𝐹𝐶)) ∈ (𝐹 lim (𝐹𝐶)))
7875, 77eqeltrrd 2845 . . . . 5 (𝜑𝐶 ∈ (𝐹 lim (𝐹𝐶)))
7973, 78sseldd 3764 . . . 4 (𝜑𝐶 ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)) lim (𝐹𝐶)))
8045, 35, 4dvlem 23967 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ ℂ)
8137, 40, 52subne0d 10660 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝑦𝐶) ≠ 0)
8250, 41, 63, 81divne0d 11076 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ≠ 0)
83 eldifsn 4474 . . . . . . . 8 ((((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ (ℂ ∖ {0}) ↔ ((((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ ℂ ∧ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ≠ 0))
8480, 82, 83sylanbrc 578 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ (ℂ ∖ {0}))
8584fmpttd 6579 . . . . . 6 (𝜑 → (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))):(𝑋 ∖ {𝐶})⟶(ℂ ∖ {0}))
86 difss 3901 . . . . . . 7 (ℂ ∖ {0}) ⊆ ℂ
8786a1i 11 . . . . . 6 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
88 eqid 2765 . . . . . 6 (𝐽t (ℂ ∖ {0})) = (𝐽t (ℂ ∖ {0}))
894, 32eleqtrrd 2847 . . . . . . . . 9 (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
90 dvfg 23977 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
91 ffun 6228 . . . . . . . . . 10 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
92 funfvbrb 6524 . . . . . . . . . 10 (Fun (𝑆 D 𝐹) → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
939, 90, 91, 924syl 19 . . . . . . . . 9 (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
9489, 93mpbid 223 . . . . . . . 8 (𝜑𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))
95 eqid 2765 . . . . . . . . 9 (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))
966, 7, 95, 11, 45, 34eldv 23969 . . . . . . . 8 (𝜑 → (𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶) ↔ (𝐶 ∈ ((int‘𝐾)‘𝑋) ∧ ((𝑆 D 𝐹)‘𝐶) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) lim 𝐶))))
9794, 96mpbid 223 . . . . . . 7 (𝜑 → (𝐶 ∈ ((int‘𝐾)‘𝑋) ∧ ((𝑆 D 𝐹)‘𝐶) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) lim 𝐶)))
9897simprd 489 . . . . . 6 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) lim 𝐶))
99 resttopon 21261 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1008, 86, 99mp2an 683 . . . . . . . . 9 (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0}))
101100a1i 11 . . . . . . . 8 (𝜑 → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1028a1i 11 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘ℂ))
103 1cnd 10292 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
104101, 102, 103cnmptc 21761 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ 1) ∈ ((𝐽t (ℂ ∖ {0})) Cn 𝐽))
105101cnmptid 21760 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ 𝑥) ∈ ((𝐽t (ℂ ∖ {0})) Cn (𝐽t (ℂ ∖ {0}))))
1067, 88divcn 22966 . . . . . . . . 9 / ∈ ((𝐽 ×t (𝐽t (ℂ ∖ {0}))) Cn 𝐽)
107106a1i 11 . . . . . . . 8 (𝜑 → / ∈ ((𝐽 ×t (𝐽t (ℂ ∖ {0}))) Cn 𝐽))
108101, 104, 105, 107cnmpt12f 21765 . . . . . . 7 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((𝐽t (ℂ ∖ {0})) Cn 𝐽))
1099, 90syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
11032feq2d 6211 . . . . . . . . . 10 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
111109, 110mpbid 223 . . . . . . . . 9 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
112111, 4ffvelrnd 6554 . . . . . . . 8 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ℂ)
113109ffnd 6226 . . . . . . . . . 10 (𝜑 → (𝑆 D 𝐹) Fn dom (𝑆 D 𝐹))
114 fnfvelrn 6550 . . . . . . . . . 10 (((𝑆 D 𝐹) Fn dom (𝑆 D 𝐹) ∧ 𝐶 ∈ dom (𝑆 D 𝐹)) → ((𝑆 D 𝐹)‘𝐶) ∈ ran (𝑆 D 𝐹))
115113, 89, 114syl2anc 579 . . . . . . . . 9 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ran (𝑆 D 𝐹))
116 dvcnv.z . . . . . . . . 9 (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹))
117 nelne2 3034 . . . . . . . . 9 ((((𝑆 D 𝐹)‘𝐶) ∈ ran (𝑆 D 𝐹) ∧ ¬ 0 ∈ ran (𝑆 D 𝐹)) → ((𝑆 D 𝐹)‘𝐶) ≠ 0)
118115, 116, 117syl2anc 579 . . . . . . . 8 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ≠ 0)
119 eldifsn 4474 . . . . . . . 8 (((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0}) ↔ (((𝑆 D 𝐹)‘𝐶) ∈ ℂ ∧ ((𝑆 D 𝐹)‘𝐶) ≠ 0))
120112, 118, 119sylanbrc 578 . . . . . . 7 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0}))
121100toponunii 21016 . . . . . . . 8 (ℂ ∖ {0}) = (𝐽t (ℂ ∖ {0}))
122121cncnpi 21378 . . . . . . 7 (((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((𝐽t (ℂ ∖ {0})) Cn 𝐽) ∧ ((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0})) → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ (((𝐽t (ℂ ∖ {0})) CnP 𝐽)‘((𝑆 D 𝐹)‘𝐶)))
123108, 120, 122syl2anc 579 . . . . . 6 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ (((𝐽t (ℂ ∖ {0})) CnP 𝐽)‘((𝑆 D 𝐹)‘𝐶)))
12485, 87, 7, 88, 98, 123limccnp 23962 . . . . 5 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))‘((𝑆 D 𝐹)‘𝐶)) ∈ (((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) lim 𝐶))
125 oveq2 6854 . . . . . . 7 (𝑥 = ((𝑆 D 𝐹)‘𝐶) → (1 / 𝑥) = (1 / ((𝑆 D 𝐹)‘𝐶)))
126 eqid 2765 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))
127 ovex 6878 . . . . . . 7 (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ V
128125, 126, 127fvmpt 6475 . . . . . 6 (((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))‘((𝑆 D 𝐹)‘𝐶)) = (1 / ((𝑆 D 𝐹)‘𝐶)))
129120, 128syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))‘((𝑆 D 𝐹)‘𝐶)) = (1 / ((𝑆 D 𝐹)‘𝐶)))
130 eqidd 2766 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))))
131 eqidd 2766 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)))
132 oveq2 6854 . . . . . . . 8 (𝑥 = (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) → (1 / 𝑥) = (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))))
13384, 130, 131, 132fmptco 6591 . . . . . . 7 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))))
13450, 41, 63, 81recdivd 11077 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) = ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶))))
135134mpteq2dva 4905 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))))
136133, 135eqtrd 2799 . . . . . 6 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))))
137136oveq1d 6861 . . . . 5 (𝜑 → (((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) lim 𝐶) = ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))) lim 𝐶))
138124, 129, 1373eltr3d 2858 . . . 4 (𝜑 → (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))) lim 𝐶))
139 oveq1 6853 . . . . 5 (𝑦 = (𝐹𝑧) → (𝑦𝐶) = ((𝐹𝑧) − 𝐶))
140 fveq2 6379 . . . . . 6 (𝑦 = (𝐹𝑧) → (𝐹𝑦) = (𝐹‘(𝐹𝑧)))
141140oveq1d 6861 . . . . 5 (𝑦 = (𝐹𝑧) → ((𝐹𝑦) − (𝐹𝐶)) = ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))
142139, 141oveq12d 6864 . . . 4 (𝑦 = (𝐹𝑧) → ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶))) = (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))))
143 eldifsni 4478 . . . . . . . . 9 (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) → 𝑧 ≠ (𝐹𝐶))
144143adantl 473 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → 𝑧 ≠ (𝐹𝐶))
145144necomd 2992 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (𝐹𝐶) ≠ 𝑧)
1461adantr 472 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → 𝐹:𝑋1-1-onto𝑌)
1474adantr 472 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → 𝐶𝑋)
14824adantl 473 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → 𝑧𝑌)
149 f1ocnvfvb 6731 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝐶𝑋𝑧𝑌) → ((𝐹𝐶) = 𝑧 ↔ (𝐹𝑧) = 𝐶))
150146, 147, 148, 149syl3anc 1490 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝐶) = 𝑧 ↔ (𝐹𝑧) = 𝐶))
151150necon3abid 2973 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝐶) ≠ 𝑧 ↔ ¬ (𝐹𝑧) = 𝐶))
152145, 151mpbid 223 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ¬ (𝐹𝑧) = 𝐶)
153152pm2.21d 119 . . . . 5 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝑧) = 𝐶 → (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))) = (1 / ((𝑆 D 𝐹)‘𝐶))))
154153impr 446 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ∧ (𝐹𝑧) = 𝐶)) → (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))) = (1 / ((𝑆 D 𝐹)‘𝐶)))
15530, 64, 79, 138, 142, 154limcco 23964 . . 3 (𝜑 → (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))) lim (𝐹𝐶)))
15675eqcomd 2771 . . . . . . . 8 (𝜑𝐶 = (𝐹‘(𝐹𝐶)))
157156adantr 472 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → 𝐶 = (𝐹‘(𝐹𝐶)))
158157oveq2d 6862 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝑧) − 𝐶) = ((𝐹𝑧) − (𝐹‘(𝐹𝐶))))
159 f1ocnvfv2 6729 . . . . . . . 8 ((𝐹:𝑋1-1-onto𝑌𝑧𝑌) → (𝐹‘(𝐹𝑧)) = 𝑧)
1601, 24, 159syl2an 589 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (𝐹‘(𝐹𝑧)) = 𝑧)
161160oveq1d 6861 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)) = (𝑧 − (𝐹𝐶)))
162158, 161oveq12d 6864 . . . . 5 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))) = (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶))))
163162mpteq2dva 4905 . . . 4 (𝜑 → (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))))
164163oveq1d 6861 . . 3 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))) lim (𝐹𝐶)) = ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) lim (𝐹𝐶)))
165155, 164eleqtrd 2846 . 2 (𝜑 → (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) lim (𝐹𝐶)))
166 eqid 2765 . . 3 (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶))))
16723, 35fssd 6239 . . 3 (𝜑𝐹:𝑌⟶ℂ)
1686, 7, 166, 11, 167, 43eldv 23969 . 2 (𝜑 → ((𝐹𝐶)(𝑆 D 𝐹)(1 / ((𝑆 D 𝐹)‘𝐶)) ↔ ((𝐹𝐶) ∈ ((int‘𝐾)‘𝑌) ∧ (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) lim (𝐹𝐶)))))
16920, 165, 168mpbir2and 704 1 (𝜑 → (𝐹𝐶)(𝑆 D 𝐹)(1 / ((𝑆 D 𝐹)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  cdif 3731  wss 3734  {csn 4336  {cpr 4338   class class class wbr 4811  cmpt 4890  ccnv 5278  dom cdm 5279  ran crn 5280  cres 5281  ccom 5283  Fun wfun 6064   Fn wfn 6065  wf 6066  1-1wf1 6067  1-1-ontowf1o 6069  cfv 6070  (class class class)co 6846  cc 10191  cr 10192  0cc0 10193  1c1 10194  cmin 10525   / cdiv 10943  t crest 16363  TopOpenctopn 16364  fldccnfld 20035  Topctop 20993  TopOnctopon 21010  intcnt 21117   Cn ccn 21324   CnP ccnp 21325   ×t ctx 21659  cnccncf 22974   lim climc 23933   D cdv 23934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-mulf 10273
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10527  df-neg 10528  df-div 10944  df-nn 11280  df-2 11340  df-3 11341  df-4 11342  df-5 11343  df-6 11344  df-7 11345  df-8 11346  df-9 11347  df-n0 11544  df-z 11630  df-dec 11747  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12153  df-xadd 12154  df-xmul 12155  df-icc 12391  df-fz 12541  df-fzo 12681  df-seq 13016  df-exp 13075  df-hash 13329  df-cj 14140  df-re 14141  df-im 14142  df-sqrt 14276  df-abs 14277  df-struct 16148  df-ndx 16149  df-slot 16150  df-base 16152  df-sets 16153  df-ress 16154  df-plusg 16243  df-mulr 16244  df-starv 16245  df-sca 16246  df-vsca 16247  df-ip 16248  df-tset 16249  df-ple 16250  df-ds 16252  df-unif 16253  df-hom 16254  df-cco 16255  df-rest 16365  df-topn 16366  df-0g 16384  df-gsum 16385  df-topgen 16386  df-pt 16387  df-prds 16390  df-xrs 16444  df-qtop 16449  df-imas 16450  df-xps 16452  df-mre 16528  df-mrc 16529  df-acs 16531  df-mgm 17524  df-sgrp 17566  df-mnd 17577  df-submnd 17618  df-mulg 17824  df-cntz 18029  df-cmn 18477  df-psmet 20027  df-xmet 20028  df-met 20029  df-bl 20030  df-mopn 20031  df-fbas 20032  df-fg 20033  df-cnfld 20036  df-top 20994  df-topon 21011  df-topsp 21033  df-bases 21046  df-cld 21119  df-ntr 21120  df-cls 21121  df-nei 21198  df-lp 21236  df-perf 21237  df-cn 21327  df-cnp 21328  df-haus 21415  df-tx 21661  df-hmeo 21854  df-fil 21945  df-fm 22037  df-flim 22038  df-flf 22039  df-xms 22420  df-ms 22421  df-tms 22422  df-cncf 22976  df-limc 23937  df-dv 23938
This theorem is referenced by:  dvcnv  24047
  Copyright terms: Public domain W3C validator