MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvlem Structured version   Visualization version   GIF version

Theorem dvcnvlem 24256
Description: Lemma for dvcnvre 24299. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
dvcnv.j 𝐽 = (TopOpen‘ℂfld)
dvcnv.k 𝐾 = (𝐽t 𝑆)
dvcnv.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvcnv.y (𝜑𝑌𝐾)
dvcnv.f (𝜑𝐹:𝑋1-1-onto𝑌)
dvcnv.i (𝜑𝐹 ∈ (𝑌cn𝑋))
dvcnv.d (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvcnv.z (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹))
dvcnv.c (𝜑𝐶𝑋)
Assertion
Ref Expression
dvcnvlem (𝜑 → (𝐹𝐶)(𝑆 D 𝐹)(1 / ((𝑆 D 𝐹)‘𝐶)))

Proof of Theorem dvcnvlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcnv.f . . . . 5 (𝜑𝐹:𝑋1-1-onto𝑌)
2 f1of 6486 . . . . 5 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
31, 2syl 17 . . . 4 (𝜑𝐹:𝑋𝑌)
4 dvcnv.c . . . 4 (𝜑𝐶𝑋)
53, 4ffvelrnd 6720 . . 3 (𝜑 → (𝐹𝐶) ∈ 𝑌)
6 dvcnv.k . . . . . 6 𝐾 = (𝐽t 𝑆)
7 dvcnv.j . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
87cnfldtopon 23074 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
9 dvcnv.s . . . . . . . 8 (𝜑𝑆 ∈ {ℝ, ℂ})
10 recnprss 24185 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
119, 10syl 17 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
12 resttopon 21453 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
138, 11, 12sylancr 587 . . . . . 6 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
146, 13syl5eqel 2886 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑆))
15 topontop 21205 . . . . 5 (𝐾 ∈ (TopOn‘𝑆) → 𝐾 ∈ Top)
1614, 15syl 17 . . . 4 (𝜑𝐾 ∈ Top)
17 dvcnv.y . . . 4 (𝜑𝑌𝐾)
18 isopn3i 21374 . . . 4 ((𝐾 ∈ Top ∧ 𝑌𝐾) → ((int‘𝐾)‘𝑌) = 𝑌)
1916, 17, 18syl2anc 584 . . 3 (𝜑 → ((int‘𝐾)‘𝑌) = 𝑌)
205, 19eleqtrrd 2885 . 2 (𝜑 → (𝐹𝐶) ∈ ((int‘𝐾)‘𝑌))
21 f1ocnv 6498 . . . . . . . . 9 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
22 f1of 6486 . . . . . . . . 9 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
231, 21, 223syl 18 . . . . . . . 8 (𝜑𝐹:𝑌𝑋)
24 eldifi 4026 . . . . . . . 8 (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) → 𝑧𝑌)
25 ffvelrn 6717 . . . . . . . 8 ((𝐹:𝑌𝑋𝑧𝑌) → (𝐹𝑧) ∈ 𝑋)
2623, 24, 25syl2an 595 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (𝐹𝑧) ∈ 𝑋)
2726anim1i 614 . . . . . 6 (((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) ∧ (𝐹𝑧) ≠ 𝐶) → ((𝐹𝑧) ∈ 𝑋 ∧ (𝐹𝑧) ≠ 𝐶))
28 eldifsn 4628 . . . . . 6 ((𝐹𝑧) ∈ (𝑋 ∖ {𝐶}) ↔ ((𝐹𝑧) ∈ 𝑋 ∧ (𝐹𝑧) ≠ 𝐶))
2927, 28sylibr 235 . . . . 5 (((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) ∧ (𝐹𝑧) ≠ 𝐶) → (𝐹𝑧) ∈ (𝑋 ∖ {𝐶}))
3029anasss 467 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ∧ (𝐹𝑧) ≠ 𝐶)) → (𝐹𝑧) ∈ (𝑋 ∖ {𝐶}))
31 eldifi 4026 . . . . . . 7 (𝑦 ∈ (𝑋 ∖ {𝐶}) → 𝑦𝑋)
32 dvcnv.d . . . . . . . . . 10 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
33 dvbsss 24183 . . . . . . . . . 10 dom (𝑆 D 𝐹) ⊆ 𝑆
3432, 33syl6eqssr 3945 . . . . . . . . 9 (𝜑𝑋𝑆)
3534, 11sstrd 3901 . . . . . . . 8 (𝜑𝑋 ⊆ ℂ)
3635sselda 3891 . . . . . . 7 ((𝜑𝑦𝑋) → 𝑦 ∈ ℂ)
3731, 36sylan2 592 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝑦 ∈ ℂ)
3834, 4sseldd 3892 . . . . . . . 8 (𝜑𝐶𝑆)
3911, 38sseldd 3892 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
4039adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝐶 ∈ ℂ)
4137, 40subcld 10847 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝑦𝐶) ∈ ℂ)
42 toponss 21219 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑆) ∧ 𝑌𝐾) → 𝑌𝑆)
4314, 17, 42syl2anc 584 . . . . . . . . 9 (𝜑𝑌𝑆)
4443, 11sstrd 3901 . . . . . . . 8 (𝜑𝑌 ⊆ ℂ)
453, 44fssd 6399 . . . . . . 7 (𝜑𝐹:𝑋⟶ℂ)
46 ffvelrn 6717 . . . . . . 7 ((𝐹:𝑋⟶ℂ ∧ 𝑦𝑋) → (𝐹𝑦) ∈ ℂ)
4745, 31, 46syl2an 595 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝑦) ∈ ℂ)
4844, 5sseldd 3892 . . . . . . 7 (𝜑 → (𝐹𝐶) ∈ ℂ)
4948adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
5047, 49subcld 10847 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑦) − (𝐹𝐶)) ∈ ℂ)
51 eldifsni 4631 . . . . . . 7 (𝑦 ∈ (𝑋 ∖ {𝐶}) → 𝑦𝐶)
5251adantl 482 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝑦𝐶)
5347, 49subeq0ad 10857 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) = 0 ↔ (𝐹𝑦) = (𝐹𝐶)))
54 f1of1 6485 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
551, 54syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑋1-1𝑌)
5655adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝐹:𝑋1-1𝑌)
5731adantl 482 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝑦𝑋)
584adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝐶𝑋)
59 f1fveq 6888 . . . . . . . . 9 ((𝐹:𝑋1-1𝑌 ∧ (𝑦𝑋𝐶𝑋)) → ((𝐹𝑦) = (𝐹𝐶) ↔ 𝑦 = 𝐶))
6056, 57, 58, 59syl12anc 833 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑦) = (𝐹𝐶) ↔ 𝑦 = 𝐶))
6153, 60bitrd 280 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) = 0 ↔ 𝑦 = 𝐶))
6261necon3bid 3027 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) ≠ 0 ↔ 𝑦𝐶))
6352, 62mpbird 258 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑦) − (𝐹𝐶)) ≠ 0)
6441, 50, 63divcld 11266 . . . 4 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶))) ∈ ℂ)
65 limcresi 24166 . . . . . 6 (𝐹 lim (𝐹𝐶)) ⊆ ((𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) lim (𝐹𝐶))
6623feqmptd 6604 . . . . . . . . 9 (𝜑𝐹 = (𝑧𝑌 ↦ (𝐹𝑧)))
6766reseq1d 5736 . . . . . . . 8 (𝜑 → (𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) = ((𝑧𝑌 ↦ (𝐹𝑧)) ↾ (𝑌 ∖ {(𝐹𝐶)})))
68 difss 4031 . . . . . . . . 9 (𝑌 ∖ {(𝐹𝐶)}) ⊆ 𝑌
69 resmpt 5789 . . . . . . . . 9 ((𝑌 ∖ {(𝐹𝐶)}) ⊆ 𝑌 → ((𝑧𝑌 ↦ (𝐹𝑧)) ↾ (𝑌 ∖ {(𝐹𝐶)})) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)))
7068, 69ax-mp 5 . . . . . . . 8 ((𝑧𝑌 ↦ (𝐹𝑧)) ↾ (𝑌 ∖ {(𝐹𝐶)})) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧))
7167, 70syl6eq 2846 . . . . . . 7 (𝜑 → (𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)))
7271oveq1d 7034 . . . . . 6 (𝜑 → ((𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) lim (𝐹𝐶)) = ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)) lim (𝐹𝐶)))
7365, 72sseqtrid 3942 . . . . 5 (𝜑 → (𝐹 lim (𝐹𝐶)) ⊆ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)) lim (𝐹𝐶)))
74 f1ocnvfv1 6901 . . . . . . 7 ((𝐹:𝑋1-1-onto𝑌𝐶𝑋) → (𝐹‘(𝐹𝐶)) = 𝐶)
751, 4, 74syl2anc 584 . . . . . 6 (𝜑 → (𝐹‘(𝐹𝐶)) = 𝐶)
76 dvcnv.i . . . . . . 7 (𝜑𝐹 ∈ (𝑌cn𝑋))
7776, 5cnlimci 24170 . . . . . 6 (𝜑 → (𝐹‘(𝐹𝐶)) ∈ (𝐹 lim (𝐹𝐶)))
7875, 77eqeltrrd 2883 . . . . 5 (𝜑𝐶 ∈ (𝐹 lim (𝐹𝐶)))
7973, 78sseldd 3892 . . . 4 (𝜑𝐶 ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)) lim (𝐹𝐶)))
8045, 35, 4dvlem 24177 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ ℂ)
8137, 40, 52subne0d 10856 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝑦𝐶) ≠ 0)
8250, 41, 63, 81divne0d 11282 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ≠ 0)
83 eldifsn 4628 . . . . . . . 8 ((((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ (ℂ ∖ {0}) ↔ ((((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ ℂ ∧ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ≠ 0))
8480, 82, 83sylanbrc 583 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ (ℂ ∖ {0}))
8584fmpttd 6745 . . . . . 6 (𝜑 → (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))):(𝑋 ∖ {𝐶})⟶(ℂ ∖ {0}))
86 difss 4031 . . . . . . 7 (ℂ ∖ {0}) ⊆ ℂ
8786a1i 11 . . . . . 6 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
88 eqid 2794 . . . . . 6 (𝐽t (ℂ ∖ {0})) = (𝐽t (ℂ ∖ {0}))
894, 32eleqtrrd 2885 . . . . . . . . 9 (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
90 dvfg 24187 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
91 ffun 6388 . . . . . . . . . 10 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
92 funfvbrb 6689 . . . . . . . . . 10 (Fun (𝑆 D 𝐹) → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
939, 90, 91, 924syl 19 . . . . . . . . 9 (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
9489, 93mpbid 233 . . . . . . . 8 (𝜑𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))
95 eqid 2794 . . . . . . . . 9 (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))
966, 7, 95, 11, 45, 34eldv 24179 . . . . . . . 8 (𝜑 → (𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶) ↔ (𝐶 ∈ ((int‘𝐾)‘𝑋) ∧ ((𝑆 D 𝐹)‘𝐶) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) lim 𝐶))))
9794, 96mpbid 233 . . . . . . 7 (𝜑 → (𝐶 ∈ ((int‘𝐾)‘𝑋) ∧ ((𝑆 D 𝐹)‘𝐶) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) lim 𝐶)))
9897simprd 496 . . . . . 6 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) lim 𝐶))
99 resttopon 21453 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1008, 86, 99mp2an 688 . . . . . . . . 9 (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0}))
101100a1i 11 . . . . . . . 8 (𝜑 → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1028a1i 11 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘ℂ))
103 1cnd 10485 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
104101, 102, 103cnmptc 21954 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ 1) ∈ ((𝐽t (ℂ ∖ {0})) Cn 𝐽))
105101cnmptid 21953 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ 𝑥) ∈ ((𝐽t (ℂ ∖ {0})) Cn (𝐽t (ℂ ∖ {0}))))
1067, 88divcn 23159 . . . . . . . . 9 / ∈ ((𝐽 ×t (𝐽t (ℂ ∖ {0}))) Cn 𝐽)
107106a1i 11 . . . . . . . 8 (𝜑 → / ∈ ((𝐽 ×t (𝐽t (ℂ ∖ {0}))) Cn 𝐽))
108101, 104, 105, 107cnmpt12f 21958 . . . . . . 7 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((𝐽t (ℂ ∖ {0})) Cn 𝐽))
1099, 90syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
11032feq2d 6371 . . . . . . . . . 10 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
111109, 110mpbid 233 . . . . . . . . 9 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
112111, 4ffvelrnd 6720 . . . . . . . 8 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ℂ)
113109ffnd 6386 . . . . . . . . . 10 (𝜑 → (𝑆 D 𝐹) Fn dom (𝑆 D 𝐹))
114 fnfvelrn 6716 . . . . . . . . . 10 (((𝑆 D 𝐹) Fn dom (𝑆 D 𝐹) ∧ 𝐶 ∈ dom (𝑆 D 𝐹)) → ((𝑆 D 𝐹)‘𝐶) ∈ ran (𝑆 D 𝐹))
115113, 89, 114syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ran (𝑆 D 𝐹))
116 dvcnv.z . . . . . . . . 9 (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹))
117 nelne2 3082 . . . . . . . . 9 ((((𝑆 D 𝐹)‘𝐶) ∈ ran (𝑆 D 𝐹) ∧ ¬ 0 ∈ ran (𝑆 D 𝐹)) → ((𝑆 D 𝐹)‘𝐶) ≠ 0)
118115, 116, 117syl2anc 584 . . . . . . . 8 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ≠ 0)
119 eldifsn 4628 . . . . . . . 8 (((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0}) ↔ (((𝑆 D 𝐹)‘𝐶) ∈ ℂ ∧ ((𝑆 D 𝐹)‘𝐶) ≠ 0))
120112, 118, 119sylanbrc 583 . . . . . . 7 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0}))
121100toponunii 21208 . . . . . . . 8 (ℂ ∖ {0}) = (𝐽t (ℂ ∖ {0}))
122121cncnpi 21570 . . . . . . 7 (((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((𝐽t (ℂ ∖ {0})) Cn 𝐽) ∧ ((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0})) → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ (((𝐽t (ℂ ∖ {0})) CnP 𝐽)‘((𝑆 D 𝐹)‘𝐶)))
123108, 120, 122syl2anc 584 . . . . . 6 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ (((𝐽t (ℂ ∖ {0})) CnP 𝐽)‘((𝑆 D 𝐹)‘𝐶)))
12485, 87, 7, 88, 98, 123limccnp 24172 . . . . 5 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))‘((𝑆 D 𝐹)‘𝐶)) ∈ (((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) lim 𝐶))
125 oveq2 7027 . . . . . . 7 (𝑥 = ((𝑆 D 𝐹)‘𝐶) → (1 / 𝑥) = (1 / ((𝑆 D 𝐹)‘𝐶)))
126 eqid 2794 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))
127 ovex 7051 . . . . . . 7 (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ V
128125, 126, 127fvmpt 6638 . . . . . 6 (((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))‘((𝑆 D 𝐹)‘𝐶)) = (1 / ((𝑆 D 𝐹)‘𝐶)))
129120, 128syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))‘((𝑆 D 𝐹)‘𝐶)) = (1 / ((𝑆 D 𝐹)‘𝐶)))
130 eqidd 2795 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))))
131 eqidd 2795 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)))
132 oveq2 7027 . . . . . . . 8 (𝑥 = (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) → (1 / 𝑥) = (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))))
13384, 130, 131, 132fmptco 6757 . . . . . . 7 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))))
13450, 41, 63, 81recdivd 11283 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) = ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶))))
135134mpteq2dva 5058 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))))
136133, 135eqtrd 2830 . . . . . 6 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))))
137136oveq1d 7034 . . . . 5 (𝜑 → (((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) lim 𝐶) = ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))) lim 𝐶))
138124, 129, 1373eltr3d 2896 . . . 4 (𝜑 → (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))) lim 𝐶))
139 oveq1 7026 . . . . 5 (𝑦 = (𝐹𝑧) → (𝑦𝐶) = ((𝐹𝑧) − 𝐶))
140 fveq2 6541 . . . . . 6 (𝑦 = (𝐹𝑧) → (𝐹𝑦) = (𝐹‘(𝐹𝑧)))
141140oveq1d 7034 . . . . 5 (𝑦 = (𝐹𝑧) → ((𝐹𝑦) − (𝐹𝐶)) = ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))
142139, 141oveq12d 7037 . . . 4 (𝑦 = (𝐹𝑧) → ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶))) = (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))))
143 eldifsni 4631 . . . . . . . . 9 (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) → 𝑧 ≠ (𝐹𝐶))
144143adantl 482 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → 𝑧 ≠ (𝐹𝐶))
145144necomd 3038 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (𝐹𝐶) ≠ 𝑧)
146 f1ocnvfvb 6904 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝐶𝑋𝑧𝑌) → ((𝐹𝐶) = 𝑧 ↔ (𝐹𝑧) = 𝐶))
1471, 4, 24, 146syl2an3an 1415 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝐶) = 𝑧 ↔ (𝐹𝑧) = 𝐶))
148147necon3abid 3019 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝐶) ≠ 𝑧 ↔ ¬ (𝐹𝑧) = 𝐶))
149145, 148mpbid 233 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ¬ (𝐹𝑧) = 𝐶)
150149pm2.21d 121 . . . . 5 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝑧) = 𝐶 → (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))) = (1 / ((𝑆 D 𝐹)‘𝐶))))
151150impr 455 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ∧ (𝐹𝑧) = 𝐶)) → (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))) = (1 / ((𝑆 D 𝐹)‘𝐶)))
15230, 64, 79, 138, 142, 151limcco 24174 . . 3 (𝜑 → (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))) lim (𝐹𝐶)))
15375eqcomd 2800 . . . . . . . 8 (𝜑𝐶 = (𝐹‘(𝐹𝐶)))
154153adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → 𝐶 = (𝐹‘(𝐹𝐶)))
155154oveq2d 7035 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝑧) − 𝐶) = ((𝐹𝑧) − (𝐹‘(𝐹𝐶))))
156 f1ocnvfv2 6902 . . . . . . . 8 ((𝐹:𝑋1-1-onto𝑌𝑧𝑌) → (𝐹‘(𝐹𝑧)) = 𝑧)
1571, 24, 156syl2an 595 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (𝐹‘(𝐹𝑧)) = 𝑧)
158157oveq1d 7034 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)) = (𝑧 − (𝐹𝐶)))
159155, 158oveq12d 7037 . . . . 5 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))) = (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶))))
160159mpteq2dva 5058 . . . 4 (𝜑 → (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))))
161160oveq1d 7034 . . 3 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))) lim (𝐹𝐶)) = ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) lim (𝐹𝐶)))
162152, 161eleqtrd 2884 . 2 (𝜑 → (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) lim (𝐹𝐶)))
163 eqid 2794 . . 3 (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶))))
16423, 35fssd 6399 . . 3 (𝜑𝐹:𝑌⟶ℂ)
1656, 7, 163, 11, 164, 43eldv 24179 . 2 (𝜑 → ((𝐹𝐶)(𝑆 D 𝐹)(1 / ((𝑆 D 𝐹)‘𝐶)) ↔ ((𝐹𝐶) ∈ ((int‘𝐾)‘𝑌) ∧ (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) lim (𝐹𝐶)))))
16620, 162, 165mpbir2and 709 1 (𝜑 → (𝐹𝐶)(𝑆 D 𝐹)(1 / ((𝑆 D 𝐹)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1522  wcel 2080  wne 2983  cdif 3858  wss 3861  {csn 4474  {cpr 4476   class class class wbr 4964  cmpt 5043  ccnv 5445  dom cdm 5446  ran crn 5447  cres 5448  ccom 5450  Fun wfun 6222   Fn wfn 6223  wf 6224  1-1wf1 6225  1-1-ontowf1o 6227  cfv 6228  (class class class)co 7019  cc 10384  cr 10385  0cc0 10386  1c1 10387  cmin 10719   / cdiv 11147  t crest 16523  TopOpenctopn 16524  fldccnfld 20227  Topctop 21185  TopOnctopon 21202  intcnt 21309   Cn ccn 21516   CnP ccnp 21517   ×t ctx 21852  cnccncf 23167   lim climc 24143   D cdv 24144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-cnex 10442  ax-resscn 10443  ax-1cn 10444  ax-icn 10445  ax-addcl 10446  ax-addrcl 10447  ax-mulcl 10448  ax-mulrcl 10449  ax-mulcom 10450  ax-addass 10451  ax-mulass 10452  ax-distr 10453  ax-i2m1 10454  ax-1ne0 10455  ax-1rid 10456  ax-rnegex 10457  ax-rrecex 10458  ax-cnre 10459  ax-pre-lttri 10460  ax-pre-lttrn 10461  ax-pre-ltadd 10462  ax-pre-mulgt0 10463  ax-pre-sup 10464  ax-mulf 10466
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-nel 3090  df-ral 3109  df-rex 3110  df-reu 3111  df-rmo 3112  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-int 4785  df-iun 4829  df-iin 4830  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-se 5406  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-isom 6237  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-of 7270  df-om 7440  df-1st 7548  df-2nd 7549  df-supp 7685  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-1o 7956  df-2o 7957  df-oadd 7960  df-er 8142  df-map 8261  df-pm 8262  df-ixp 8314  df-en 8361  df-dom 8362  df-sdom 8363  df-fin 8364  df-fsupp 8683  df-fi 8724  df-sup 8755  df-inf 8756  df-oi 8823  df-card 9217  df-pnf 10526  df-mnf 10527  df-xr 10528  df-ltxr 10529  df-le 10530  df-sub 10721  df-neg 10722  df-div 11148  df-nn 11489  df-2 11550  df-3 11551  df-4 11552  df-5 11553  df-6 11554  df-7 11555  df-8 11556  df-9 11557  df-n0 11748  df-z 11832  df-dec 11949  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-icc 12595  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148
This theorem is referenced by:  dvcnv  24257
  Copyright terms: Public domain W3C validator