MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvlem Structured version   Visualization version   GIF version

Theorem dvcnvlem 25212
Description: Lemma for dvcnvre 25255. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
dvcnv.j 𝐽 = (TopOpen‘ℂfld)
dvcnv.k 𝐾 = (𝐽t 𝑆)
dvcnv.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvcnv.y (𝜑𝑌𝐾)
dvcnv.f (𝜑𝐹:𝑋1-1-onto𝑌)
dvcnv.i (𝜑𝐹 ∈ (𝑌cn𝑋))
dvcnv.d (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvcnv.z (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹))
dvcnv.c (𝜑𝐶𝑋)
Assertion
Ref Expression
dvcnvlem (𝜑 → (𝐹𝐶)(𝑆 D 𝐹)(1 / ((𝑆 D 𝐹)‘𝐶)))

Proof of Theorem dvcnvlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcnv.f . . . . 5 (𝜑𝐹:𝑋1-1-onto𝑌)
2 f1of 6753 . . . . 5 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
31, 2syl 17 . . . 4 (𝜑𝐹:𝑋𝑌)
4 dvcnv.c . . . 4 (𝜑𝐶𝑋)
53, 4ffvelcdmd 7001 . . 3 (𝜑 → (𝐹𝐶) ∈ 𝑌)
6 dvcnv.k . . . . . 6 𝐾 = (𝐽t 𝑆)
7 dvcnv.j . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
87cnfldtopon 24018 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
9 dvcnv.s . . . . . . . 8 (𝜑𝑆 ∈ {ℝ, ℂ})
10 recnprss 25140 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
119, 10syl 17 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
12 resttopon 22384 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
138, 11, 12sylancr 587 . . . . . 6 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
146, 13eqeltrid 2842 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑆))
15 topontop 22134 . . . . 5 (𝐾 ∈ (TopOn‘𝑆) → 𝐾 ∈ Top)
1614, 15syl 17 . . . 4 (𝜑𝐾 ∈ Top)
17 dvcnv.y . . . 4 (𝜑𝑌𝐾)
18 isopn3i 22305 . . . 4 ((𝐾 ∈ Top ∧ 𝑌𝐾) → ((int‘𝐾)‘𝑌) = 𝑌)
1916, 17, 18syl2anc 584 . . 3 (𝜑 → ((int‘𝐾)‘𝑌) = 𝑌)
205, 19eleqtrrd 2841 . 2 (𝜑 → (𝐹𝐶) ∈ ((int‘𝐾)‘𝑌))
21 f1ocnv 6765 . . . . . . . . 9 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
22 f1of 6753 . . . . . . . . 9 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
231, 21, 223syl 18 . . . . . . . 8 (𝜑𝐹:𝑌𝑋)
24 eldifi 4072 . . . . . . . 8 (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) → 𝑧𝑌)
25 ffvelcdm 6998 . . . . . . . 8 ((𝐹:𝑌𝑋𝑧𝑌) → (𝐹𝑧) ∈ 𝑋)
2623, 24, 25syl2an 596 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (𝐹𝑧) ∈ 𝑋)
2726anim1i 615 . . . . . 6 (((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) ∧ (𝐹𝑧) ≠ 𝐶) → ((𝐹𝑧) ∈ 𝑋 ∧ (𝐹𝑧) ≠ 𝐶))
28 eldifsn 4732 . . . . . 6 ((𝐹𝑧) ∈ (𝑋 ∖ {𝐶}) ↔ ((𝐹𝑧) ∈ 𝑋 ∧ (𝐹𝑧) ≠ 𝐶))
2927, 28sylibr 233 . . . . 5 (((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) ∧ (𝐹𝑧) ≠ 𝐶) → (𝐹𝑧) ∈ (𝑋 ∖ {𝐶}))
3029anasss 467 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ∧ (𝐹𝑧) ≠ 𝐶)) → (𝐹𝑧) ∈ (𝑋 ∖ {𝐶}))
31 eldifi 4072 . . . . . . 7 (𝑦 ∈ (𝑋 ∖ {𝐶}) → 𝑦𝑋)
32 dvcnv.d . . . . . . . . . 10 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
33 dvbsss 25138 . . . . . . . . . 10 dom (𝑆 D 𝐹) ⊆ 𝑆
3432, 33eqsstrrdi 3986 . . . . . . . . 9 (𝜑𝑋𝑆)
3534, 11sstrd 3941 . . . . . . . 8 (𝜑𝑋 ⊆ ℂ)
3635sselda 3931 . . . . . . 7 ((𝜑𝑦𝑋) → 𝑦 ∈ ℂ)
3731, 36sylan2 593 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝑦 ∈ ℂ)
3834, 4sseldd 3932 . . . . . . . 8 (𝜑𝐶𝑆)
3911, 38sseldd 3932 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
4039adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝐶 ∈ ℂ)
4137, 40subcld 11405 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝑦𝐶) ∈ ℂ)
42 toponss 22148 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑆) ∧ 𝑌𝐾) → 𝑌𝑆)
4314, 17, 42syl2anc 584 . . . . . . . . 9 (𝜑𝑌𝑆)
4443, 11sstrd 3941 . . . . . . . 8 (𝜑𝑌 ⊆ ℂ)
453, 44fssd 6655 . . . . . . 7 (𝜑𝐹:𝑋⟶ℂ)
46 ffvelcdm 6998 . . . . . . 7 ((𝐹:𝑋⟶ℂ ∧ 𝑦𝑋) → (𝐹𝑦) ∈ ℂ)
4745, 31, 46syl2an 596 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝑦) ∈ ℂ)
4844, 5sseldd 3932 . . . . . . 7 (𝜑 → (𝐹𝐶) ∈ ℂ)
4948adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
5047, 49subcld 11405 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑦) − (𝐹𝐶)) ∈ ℂ)
51 eldifsni 4735 . . . . . . 7 (𝑦 ∈ (𝑋 ∖ {𝐶}) → 𝑦𝐶)
5251adantl 482 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝑦𝐶)
5347, 49subeq0ad 11415 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) = 0 ↔ (𝐹𝑦) = (𝐹𝐶)))
54 f1of1 6752 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
551, 54syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑋1-1𝑌)
5655adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝐹:𝑋1-1𝑌)
5731adantl 482 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝑦𝑋)
584adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝐶𝑋)
59 f1fveq 7174 . . . . . . . . 9 ((𝐹:𝑋1-1𝑌 ∧ (𝑦𝑋𝐶𝑋)) → ((𝐹𝑦) = (𝐹𝐶) ↔ 𝑦 = 𝐶))
6056, 57, 58, 59syl12anc 834 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑦) = (𝐹𝐶) ↔ 𝑦 = 𝐶))
6153, 60bitrd 278 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) = 0 ↔ 𝑦 = 𝐶))
6261necon3bid 2986 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) ≠ 0 ↔ 𝑦𝐶))
6352, 62mpbird 256 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑦) − (𝐹𝐶)) ≠ 0)
6441, 50, 63divcld 11824 . . . 4 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶))) ∈ ℂ)
65 limcresi 25121 . . . . . 6 (𝐹 lim (𝐹𝐶)) ⊆ ((𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) lim (𝐹𝐶))
6623feqmptd 6876 . . . . . . . . 9 (𝜑𝐹 = (𝑧𝑌 ↦ (𝐹𝑧)))
6766reseq1d 5909 . . . . . . . 8 (𝜑 → (𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) = ((𝑧𝑌 ↦ (𝐹𝑧)) ↾ (𝑌 ∖ {(𝐹𝐶)})))
68 difss 4077 . . . . . . . . 9 (𝑌 ∖ {(𝐹𝐶)}) ⊆ 𝑌
69 resmpt 5964 . . . . . . . . 9 ((𝑌 ∖ {(𝐹𝐶)}) ⊆ 𝑌 → ((𝑧𝑌 ↦ (𝐹𝑧)) ↾ (𝑌 ∖ {(𝐹𝐶)})) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)))
7068, 69ax-mp 5 . . . . . . . 8 ((𝑧𝑌 ↦ (𝐹𝑧)) ↾ (𝑌 ∖ {(𝐹𝐶)})) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧))
7167, 70eqtrdi 2793 . . . . . . 7 (𝜑 → (𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)))
7271oveq1d 7330 . . . . . 6 (𝜑 → ((𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) lim (𝐹𝐶)) = ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)) lim (𝐹𝐶)))
7365, 72sseqtrid 3983 . . . . 5 (𝜑 → (𝐹 lim (𝐹𝐶)) ⊆ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)) lim (𝐹𝐶)))
74 f1ocnvfv1 7187 . . . . . . 7 ((𝐹:𝑋1-1-onto𝑌𝐶𝑋) → (𝐹‘(𝐹𝐶)) = 𝐶)
751, 4, 74syl2anc 584 . . . . . 6 (𝜑 → (𝐹‘(𝐹𝐶)) = 𝐶)
76 dvcnv.i . . . . . . 7 (𝜑𝐹 ∈ (𝑌cn𝑋))
7776, 5cnlimci 25125 . . . . . 6 (𝜑 → (𝐹‘(𝐹𝐶)) ∈ (𝐹 lim (𝐹𝐶)))
7875, 77eqeltrrd 2839 . . . . 5 (𝜑𝐶 ∈ (𝐹 lim (𝐹𝐶)))
7973, 78sseldd 3932 . . . 4 (𝜑𝐶 ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)) lim (𝐹𝐶)))
8045, 35, 4dvlem 25132 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ ℂ)
8137, 40, 52subne0d 11414 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝑦𝐶) ≠ 0)
8250, 41, 63, 81divne0d 11840 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ≠ 0)
83 eldifsn 4732 . . . . . . . 8 ((((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ (ℂ ∖ {0}) ↔ ((((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ ℂ ∧ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ≠ 0))
8480, 82, 83sylanbrc 583 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ (ℂ ∖ {0}))
8584fmpttd 7028 . . . . . 6 (𝜑 → (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))):(𝑋 ∖ {𝐶})⟶(ℂ ∖ {0}))
86 difss 4077 . . . . . . 7 (ℂ ∖ {0}) ⊆ ℂ
8786a1i 11 . . . . . 6 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
88 eqid 2737 . . . . . 6 (𝐽t (ℂ ∖ {0})) = (𝐽t (ℂ ∖ {0}))
894, 32eleqtrrd 2841 . . . . . . . . 9 (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
90 dvfg 25142 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
91 ffun 6640 . . . . . . . . . 10 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
92 funfvbrb 6967 . . . . . . . . . 10 (Fun (𝑆 D 𝐹) → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
939, 90, 91, 924syl 19 . . . . . . . . 9 (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
9489, 93mpbid 231 . . . . . . . 8 (𝜑𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))
95 eqid 2737 . . . . . . . . 9 (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))
966, 7, 95, 11, 45, 34eldv 25134 . . . . . . . 8 (𝜑 → (𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶) ↔ (𝐶 ∈ ((int‘𝐾)‘𝑋) ∧ ((𝑆 D 𝐹)‘𝐶) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) lim 𝐶))))
9794, 96mpbid 231 . . . . . . 7 (𝜑 → (𝐶 ∈ ((int‘𝐾)‘𝑋) ∧ ((𝑆 D 𝐹)‘𝐶) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) lim 𝐶)))
9897simprd 496 . . . . . 6 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) lim 𝐶))
99 resttopon 22384 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1008, 86, 99mp2an 689 . . . . . . . . 9 (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0}))
101100a1i 11 . . . . . . . 8 (𝜑 → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1028a1i 11 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘ℂ))
103 1cnd 11043 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
104101, 102, 103cnmptc 22885 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ 1) ∈ ((𝐽t (ℂ ∖ {0})) Cn 𝐽))
105101cnmptid 22884 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ 𝑥) ∈ ((𝐽t (ℂ ∖ {0})) Cn (𝐽t (ℂ ∖ {0}))))
1067, 88divcn 24103 . . . . . . . . 9 / ∈ ((𝐽 ×t (𝐽t (ℂ ∖ {0}))) Cn 𝐽)
107106a1i 11 . . . . . . . 8 (𝜑 → / ∈ ((𝐽 ×t (𝐽t (ℂ ∖ {0}))) Cn 𝐽))
108101, 104, 105, 107cnmpt12f 22889 . . . . . . 7 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((𝐽t (ℂ ∖ {0})) Cn 𝐽))
1099, 90syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
11032feq2d 6623 . . . . . . . . . 10 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
111109, 110mpbid 231 . . . . . . . . 9 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
112111, 4ffvelcdmd 7001 . . . . . . . 8 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ℂ)
113109ffnd 6638 . . . . . . . . . 10 (𝜑 → (𝑆 D 𝐹) Fn dom (𝑆 D 𝐹))
114 fnfvelrn 6997 . . . . . . . . . 10 (((𝑆 D 𝐹) Fn dom (𝑆 D 𝐹) ∧ 𝐶 ∈ dom (𝑆 D 𝐹)) → ((𝑆 D 𝐹)‘𝐶) ∈ ran (𝑆 D 𝐹))
115113, 89, 114syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ran (𝑆 D 𝐹))
116 dvcnv.z . . . . . . . . 9 (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹))
117 nelne2 3040 . . . . . . . . 9 ((((𝑆 D 𝐹)‘𝐶) ∈ ran (𝑆 D 𝐹) ∧ ¬ 0 ∈ ran (𝑆 D 𝐹)) → ((𝑆 D 𝐹)‘𝐶) ≠ 0)
118115, 116, 117syl2anc 584 . . . . . . . 8 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ≠ 0)
119 eldifsn 4732 . . . . . . . 8 (((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0}) ↔ (((𝑆 D 𝐹)‘𝐶) ∈ ℂ ∧ ((𝑆 D 𝐹)‘𝐶) ≠ 0))
120112, 118, 119sylanbrc 583 . . . . . . 7 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0}))
121100toponunii 22137 . . . . . . . 8 (ℂ ∖ {0}) = (𝐽t (ℂ ∖ {0}))
122121cncnpi 22501 . . . . . . 7 (((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((𝐽t (ℂ ∖ {0})) Cn 𝐽) ∧ ((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0})) → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ (((𝐽t (ℂ ∖ {0})) CnP 𝐽)‘((𝑆 D 𝐹)‘𝐶)))
123108, 120, 122syl2anc 584 . . . . . 6 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ (((𝐽t (ℂ ∖ {0})) CnP 𝐽)‘((𝑆 D 𝐹)‘𝐶)))
12485, 87, 7, 88, 98, 123limccnp 25127 . . . . 5 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))‘((𝑆 D 𝐹)‘𝐶)) ∈ (((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) lim 𝐶))
125 oveq2 7323 . . . . . . 7 (𝑥 = ((𝑆 D 𝐹)‘𝐶) → (1 / 𝑥) = (1 / ((𝑆 D 𝐹)‘𝐶)))
126 eqid 2737 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))
127 ovex 7348 . . . . . . 7 (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ V
128125, 126, 127fvmpt 6914 . . . . . 6 (((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))‘((𝑆 D 𝐹)‘𝐶)) = (1 / ((𝑆 D 𝐹)‘𝐶)))
129120, 128syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))‘((𝑆 D 𝐹)‘𝐶)) = (1 / ((𝑆 D 𝐹)‘𝐶)))
130 eqidd 2738 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))))
131 eqidd 2738 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)))
132 oveq2 7323 . . . . . . . 8 (𝑥 = (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) → (1 / 𝑥) = (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))))
13384, 130, 131, 132fmptco 7040 . . . . . . 7 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))))
13450, 41, 63, 81recdivd 11841 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) = ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶))))
135134mpteq2dva 5187 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))))
136133, 135eqtrd 2777 . . . . . 6 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))))
137136oveq1d 7330 . . . . 5 (𝜑 → (((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) lim 𝐶) = ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))) lim 𝐶))
138124, 129, 1373eltr3d 2852 . . . 4 (𝜑 → (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))) lim 𝐶))
139 oveq1 7322 . . . . 5 (𝑦 = (𝐹𝑧) → (𝑦𝐶) = ((𝐹𝑧) − 𝐶))
140 fveq2 6811 . . . . . 6 (𝑦 = (𝐹𝑧) → (𝐹𝑦) = (𝐹‘(𝐹𝑧)))
141140oveq1d 7330 . . . . 5 (𝑦 = (𝐹𝑧) → ((𝐹𝑦) − (𝐹𝐶)) = ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))
142139, 141oveq12d 7333 . . . 4 (𝑦 = (𝐹𝑧) → ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶))) = (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))))
143 eldifsni 4735 . . . . . . . . 9 (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) → 𝑧 ≠ (𝐹𝐶))
144143adantl 482 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → 𝑧 ≠ (𝐹𝐶))
145144necomd 2997 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (𝐹𝐶) ≠ 𝑧)
146 f1ocnvfvb 7190 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝐶𝑋𝑧𝑌) → ((𝐹𝐶) = 𝑧 ↔ (𝐹𝑧) = 𝐶))
1471, 4, 24, 146syl2an3an 1421 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝐶) = 𝑧 ↔ (𝐹𝑧) = 𝐶))
148147necon3abid 2978 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝐶) ≠ 𝑧 ↔ ¬ (𝐹𝑧) = 𝐶))
149145, 148mpbid 231 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ¬ (𝐹𝑧) = 𝐶)
150149pm2.21d 121 . . . . 5 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝑧) = 𝐶 → (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))) = (1 / ((𝑆 D 𝐹)‘𝐶))))
151150impr 455 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ∧ (𝐹𝑧) = 𝐶)) → (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))) = (1 / ((𝑆 D 𝐹)‘𝐶)))
15230, 64, 79, 138, 142, 151limcco 25129 . . 3 (𝜑 → (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))) lim (𝐹𝐶)))
15375eqcomd 2743 . . . . . . . 8 (𝜑𝐶 = (𝐹‘(𝐹𝐶)))
154153adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → 𝐶 = (𝐹‘(𝐹𝐶)))
155154oveq2d 7331 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝑧) − 𝐶) = ((𝐹𝑧) − (𝐹‘(𝐹𝐶))))
156 f1ocnvfv2 7188 . . . . . . . 8 ((𝐹:𝑋1-1-onto𝑌𝑧𝑌) → (𝐹‘(𝐹𝑧)) = 𝑧)
1571, 24, 156syl2an 596 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (𝐹‘(𝐹𝑧)) = 𝑧)
158157oveq1d 7330 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)) = (𝑧 − (𝐹𝐶)))
159155, 158oveq12d 7333 . . . . 5 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))) = (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶))))
160159mpteq2dva 5187 . . . 4 (𝜑 → (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))))
161160oveq1d 7330 . . 3 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))) lim (𝐹𝐶)) = ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) lim (𝐹𝐶)))
162152, 161eleqtrd 2840 . 2 (𝜑 → (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) lim (𝐹𝐶)))
163 eqid 2737 . . 3 (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶))))
16423, 35fssd 6655 . . 3 (𝜑𝐹:𝑌⟶ℂ)
1656, 7, 163, 11, 164, 43eldv 25134 . 2 (𝜑 → ((𝐹𝐶)(𝑆 D 𝐹)(1 / ((𝑆 D 𝐹)‘𝐶)) ↔ ((𝐹𝐶) ∈ ((int‘𝐾)‘𝑌) ∧ (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) lim (𝐹𝐶)))))
16620, 162, 165mpbir2and 710 1 (𝜑 → (𝐹𝐶)(𝑆 D 𝐹)(1 / ((𝑆 D 𝐹)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2941  cdif 3894  wss 3897  {csn 4571  {cpr 4573   class class class wbr 5087  cmpt 5170  ccnv 5606  dom cdm 5607  ran crn 5608  cres 5609  ccom 5611  Fun wfun 6459   Fn wfn 6460  wf 6461  1-1wf1 6462  1-1-ontowf1o 6464  cfv 6465  (class class class)co 7315  cc 10942  cr 10943  0cc0 10944  1c1 10945  cmin 11278   / cdiv 11705  t crest 17201  TopOpenctopn 17202  fldccnfld 20669  Topctop 22114  TopOnctopon 22131  intcnt 22240   Cn ccn 22447   CnP ccnp 22448   ×t ctx 22783  cnccncf 24111   lim climc 25098   D cdv 25099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021  ax-pre-sup 11022  ax-mulf 11024
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-iin 4940  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-of 7573  df-om 7758  df-1st 7876  df-2nd 7877  df-supp 8025  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-1o 8344  df-2o 8345  df-er 8546  df-map 8665  df-pm 8666  df-ixp 8734  df-en 8782  df-dom 8783  df-sdom 8784  df-fin 8785  df-fsupp 9199  df-fi 9240  df-sup 9271  df-inf 9272  df-oi 9339  df-card 9768  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-div 11706  df-nn 12047  df-2 12109  df-3 12110  df-4 12111  df-5 12112  df-6 12113  df-7 12114  df-8 12115  df-9 12116  df-n0 12307  df-z 12393  df-dec 12511  df-uz 12656  df-q 12762  df-rp 12804  df-xneg 12921  df-xadd 12922  df-xmul 12923  df-icc 13159  df-fz 13313  df-fzo 13456  df-seq 13795  df-exp 13856  df-hash 14118  df-cj 14882  df-re 14883  df-im 14884  df-sqrt 15018  df-abs 15019  df-struct 16918  df-sets 16935  df-slot 16953  df-ndx 16965  df-base 16983  df-ress 17012  df-plusg 17045  df-mulr 17046  df-starv 17047  df-sca 17048  df-vsca 17049  df-ip 17050  df-tset 17051  df-ple 17052  df-ds 17054  df-unif 17055  df-hom 17056  df-cco 17057  df-rest 17203  df-topn 17204  df-0g 17222  df-gsum 17223  df-topgen 17224  df-pt 17225  df-prds 17228  df-xrs 17283  df-qtop 17288  df-imas 17289  df-xps 17291  df-mre 17365  df-mrc 17366  df-acs 17368  df-mgm 18396  df-sgrp 18445  df-mnd 18456  df-submnd 18501  df-mulg 18770  df-cntz 18992  df-cmn 19456  df-psmet 20661  df-xmet 20662  df-met 20663  df-bl 20664  df-mopn 20665  df-fbas 20666  df-fg 20667  df-cnfld 20670  df-top 22115  df-topon 22132  df-topsp 22154  df-bases 22168  df-cld 22242  df-ntr 22243  df-cls 22244  df-nei 22321  df-lp 22359  df-perf 22360  df-cn 22450  df-cnp 22451  df-haus 22538  df-tx 22785  df-hmeo 22978  df-fil 23069  df-fm 23161  df-flim 23162  df-flf 23163  df-xms 23545  df-ms 23546  df-tms 23547  df-cncf 24113  df-limc 25102  df-dv 25103
This theorem is referenced by:  dvcnv  25213
  Copyright terms: Public domain W3C validator