MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvlem Structured version   Visualization version   GIF version

Theorem dvcnvlem 24575
Description: Lemma for dvcnvre 24618. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
dvcnv.j 𝐽 = (TopOpen‘ℂfld)
dvcnv.k 𝐾 = (𝐽t 𝑆)
dvcnv.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvcnv.y (𝜑𝑌𝐾)
dvcnv.f (𝜑𝐹:𝑋1-1-onto𝑌)
dvcnv.i (𝜑𝐹 ∈ (𝑌cn𝑋))
dvcnv.d (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvcnv.z (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹))
dvcnv.c (𝜑𝐶𝑋)
Assertion
Ref Expression
dvcnvlem (𝜑 → (𝐹𝐶)(𝑆 D 𝐹)(1 / ((𝑆 D 𝐹)‘𝐶)))

Proof of Theorem dvcnvlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcnv.f . . . . 5 (𝜑𝐹:𝑋1-1-onto𝑌)
2 f1of 6617 . . . . 5 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
31, 2syl 17 . . . 4 (𝜑𝐹:𝑋𝑌)
4 dvcnv.c . . . 4 (𝜑𝐶𝑋)
53, 4ffvelrnd 6854 . . 3 (𝜑 → (𝐹𝐶) ∈ 𝑌)
6 dvcnv.k . . . . . 6 𝐾 = (𝐽t 𝑆)
7 dvcnv.j . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
87cnfldtopon 23393 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
9 dvcnv.s . . . . . . . 8 (𝜑𝑆 ∈ {ℝ, ℂ})
10 recnprss 24504 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
119, 10syl 17 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
12 resttopon 21771 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
138, 11, 12sylancr 589 . . . . . 6 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
146, 13eqeltrid 2919 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑆))
15 topontop 21523 . . . . 5 (𝐾 ∈ (TopOn‘𝑆) → 𝐾 ∈ Top)
1614, 15syl 17 . . . 4 (𝜑𝐾 ∈ Top)
17 dvcnv.y . . . 4 (𝜑𝑌𝐾)
18 isopn3i 21692 . . . 4 ((𝐾 ∈ Top ∧ 𝑌𝐾) → ((int‘𝐾)‘𝑌) = 𝑌)
1916, 17, 18syl2anc 586 . . 3 (𝜑 → ((int‘𝐾)‘𝑌) = 𝑌)
205, 19eleqtrrd 2918 . 2 (𝜑 → (𝐹𝐶) ∈ ((int‘𝐾)‘𝑌))
21 f1ocnv 6629 . . . . . . . . 9 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
22 f1of 6617 . . . . . . . . 9 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
231, 21, 223syl 18 . . . . . . . 8 (𝜑𝐹:𝑌𝑋)
24 eldifi 4105 . . . . . . . 8 (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) → 𝑧𝑌)
25 ffvelrn 6851 . . . . . . . 8 ((𝐹:𝑌𝑋𝑧𝑌) → (𝐹𝑧) ∈ 𝑋)
2623, 24, 25syl2an 597 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (𝐹𝑧) ∈ 𝑋)
2726anim1i 616 . . . . . 6 (((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) ∧ (𝐹𝑧) ≠ 𝐶) → ((𝐹𝑧) ∈ 𝑋 ∧ (𝐹𝑧) ≠ 𝐶))
28 eldifsn 4721 . . . . . 6 ((𝐹𝑧) ∈ (𝑋 ∖ {𝐶}) ↔ ((𝐹𝑧) ∈ 𝑋 ∧ (𝐹𝑧) ≠ 𝐶))
2927, 28sylibr 236 . . . . 5 (((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) ∧ (𝐹𝑧) ≠ 𝐶) → (𝐹𝑧) ∈ (𝑋 ∖ {𝐶}))
3029anasss 469 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ∧ (𝐹𝑧) ≠ 𝐶)) → (𝐹𝑧) ∈ (𝑋 ∖ {𝐶}))
31 eldifi 4105 . . . . . . 7 (𝑦 ∈ (𝑋 ∖ {𝐶}) → 𝑦𝑋)
32 dvcnv.d . . . . . . . . . 10 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
33 dvbsss 24502 . . . . . . . . . 10 dom (𝑆 D 𝐹) ⊆ 𝑆
3432, 33eqsstrrdi 4024 . . . . . . . . 9 (𝜑𝑋𝑆)
3534, 11sstrd 3979 . . . . . . . 8 (𝜑𝑋 ⊆ ℂ)
3635sselda 3969 . . . . . . 7 ((𝜑𝑦𝑋) → 𝑦 ∈ ℂ)
3731, 36sylan2 594 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝑦 ∈ ℂ)
3834, 4sseldd 3970 . . . . . . . 8 (𝜑𝐶𝑆)
3911, 38sseldd 3970 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
4039adantr 483 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝐶 ∈ ℂ)
4137, 40subcld 10999 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝑦𝐶) ∈ ℂ)
42 toponss 21537 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑆) ∧ 𝑌𝐾) → 𝑌𝑆)
4314, 17, 42syl2anc 586 . . . . . . . . 9 (𝜑𝑌𝑆)
4443, 11sstrd 3979 . . . . . . . 8 (𝜑𝑌 ⊆ ℂ)
453, 44fssd 6530 . . . . . . 7 (𝜑𝐹:𝑋⟶ℂ)
46 ffvelrn 6851 . . . . . . 7 ((𝐹:𝑋⟶ℂ ∧ 𝑦𝑋) → (𝐹𝑦) ∈ ℂ)
4745, 31, 46syl2an 597 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝑦) ∈ ℂ)
4844, 5sseldd 3970 . . . . . . 7 (𝜑 → (𝐹𝐶) ∈ ℂ)
4948adantr 483 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
5047, 49subcld 10999 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑦) − (𝐹𝐶)) ∈ ℂ)
51 eldifsni 4724 . . . . . . 7 (𝑦 ∈ (𝑋 ∖ {𝐶}) → 𝑦𝐶)
5251adantl 484 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝑦𝐶)
5347, 49subeq0ad 11009 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) = 0 ↔ (𝐹𝑦) = (𝐹𝐶)))
54 f1of1 6616 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
551, 54syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑋1-1𝑌)
5655adantr 483 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝐹:𝑋1-1𝑌)
5731adantl 484 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝑦𝑋)
584adantr 483 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝐶𝑋)
59 f1fveq 7022 . . . . . . . . 9 ((𝐹:𝑋1-1𝑌 ∧ (𝑦𝑋𝐶𝑋)) → ((𝐹𝑦) = (𝐹𝐶) ↔ 𝑦 = 𝐶))
6056, 57, 58, 59syl12anc 834 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑦) = (𝐹𝐶) ↔ 𝑦 = 𝐶))
6153, 60bitrd 281 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) = 0 ↔ 𝑦 = 𝐶))
6261necon3bid 3062 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) ≠ 0 ↔ 𝑦𝐶))
6352, 62mpbird 259 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑦) − (𝐹𝐶)) ≠ 0)
6441, 50, 63divcld 11418 . . . 4 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶))) ∈ ℂ)
65 limcresi 24485 . . . . . 6 (𝐹 lim (𝐹𝐶)) ⊆ ((𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) lim (𝐹𝐶))
6623feqmptd 6735 . . . . . . . . 9 (𝜑𝐹 = (𝑧𝑌 ↦ (𝐹𝑧)))
6766reseq1d 5854 . . . . . . . 8 (𝜑 → (𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) = ((𝑧𝑌 ↦ (𝐹𝑧)) ↾ (𝑌 ∖ {(𝐹𝐶)})))
68 difss 4110 . . . . . . . . 9 (𝑌 ∖ {(𝐹𝐶)}) ⊆ 𝑌
69 resmpt 5907 . . . . . . . . 9 ((𝑌 ∖ {(𝐹𝐶)}) ⊆ 𝑌 → ((𝑧𝑌 ↦ (𝐹𝑧)) ↾ (𝑌 ∖ {(𝐹𝐶)})) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)))
7068, 69ax-mp 5 . . . . . . . 8 ((𝑧𝑌 ↦ (𝐹𝑧)) ↾ (𝑌 ∖ {(𝐹𝐶)})) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧))
7167, 70syl6eq 2874 . . . . . . 7 (𝜑 → (𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)))
7271oveq1d 7173 . . . . . 6 (𝜑 → ((𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) lim (𝐹𝐶)) = ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)) lim (𝐹𝐶)))
7365, 72sseqtrid 4021 . . . . 5 (𝜑 → (𝐹 lim (𝐹𝐶)) ⊆ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)) lim (𝐹𝐶)))
74 f1ocnvfv1 7035 . . . . . . 7 ((𝐹:𝑋1-1-onto𝑌𝐶𝑋) → (𝐹‘(𝐹𝐶)) = 𝐶)
751, 4, 74syl2anc 586 . . . . . 6 (𝜑 → (𝐹‘(𝐹𝐶)) = 𝐶)
76 dvcnv.i . . . . . . 7 (𝜑𝐹 ∈ (𝑌cn𝑋))
7776, 5cnlimci 24489 . . . . . 6 (𝜑 → (𝐹‘(𝐹𝐶)) ∈ (𝐹 lim (𝐹𝐶)))
7875, 77eqeltrrd 2916 . . . . 5 (𝜑𝐶 ∈ (𝐹 lim (𝐹𝐶)))
7973, 78sseldd 3970 . . . 4 (𝜑𝐶 ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)) lim (𝐹𝐶)))
8045, 35, 4dvlem 24496 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ ℂ)
8137, 40, 52subne0d 11008 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝑦𝐶) ≠ 0)
8250, 41, 63, 81divne0d 11434 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ≠ 0)
83 eldifsn 4721 . . . . . . . 8 ((((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ (ℂ ∖ {0}) ↔ ((((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ ℂ ∧ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ≠ 0))
8480, 82, 83sylanbrc 585 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ (ℂ ∖ {0}))
8584fmpttd 6881 . . . . . 6 (𝜑 → (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))):(𝑋 ∖ {𝐶})⟶(ℂ ∖ {0}))
86 difss 4110 . . . . . . 7 (ℂ ∖ {0}) ⊆ ℂ
8786a1i 11 . . . . . 6 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
88 eqid 2823 . . . . . 6 (𝐽t (ℂ ∖ {0})) = (𝐽t (ℂ ∖ {0}))
894, 32eleqtrrd 2918 . . . . . . . . 9 (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
90 dvfg 24506 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
91 ffun 6519 . . . . . . . . . 10 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
92 funfvbrb 6823 . . . . . . . . . 10 (Fun (𝑆 D 𝐹) → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
939, 90, 91, 924syl 19 . . . . . . . . 9 (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
9489, 93mpbid 234 . . . . . . . 8 (𝜑𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))
95 eqid 2823 . . . . . . . . 9 (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))
966, 7, 95, 11, 45, 34eldv 24498 . . . . . . . 8 (𝜑 → (𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶) ↔ (𝐶 ∈ ((int‘𝐾)‘𝑋) ∧ ((𝑆 D 𝐹)‘𝐶) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) lim 𝐶))))
9794, 96mpbid 234 . . . . . . 7 (𝜑 → (𝐶 ∈ ((int‘𝐾)‘𝑋) ∧ ((𝑆 D 𝐹)‘𝐶) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) lim 𝐶)))
9897simprd 498 . . . . . 6 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) lim 𝐶))
99 resttopon 21771 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1008, 86, 99mp2an 690 . . . . . . . . 9 (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0}))
101100a1i 11 . . . . . . . 8 (𝜑 → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1028a1i 11 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘ℂ))
103 1cnd 10638 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
104101, 102, 103cnmptc 22272 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ 1) ∈ ((𝐽t (ℂ ∖ {0})) Cn 𝐽))
105101cnmptid 22271 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ 𝑥) ∈ ((𝐽t (ℂ ∖ {0})) Cn (𝐽t (ℂ ∖ {0}))))
1067, 88divcn 23478 . . . . . . . . 9 / ∈ ((𝐽 ×t (𝐽t (ℂ ∖ {0}))) Cn 𝐽)
107106a1i 11 . . . . . . . 8 (𝜑 → / ∈ ((𝐽 ×t (𝐽t (ℂ ∖ {0}))) Cn 𝐽))
108101, 104, 105, 107cnmpt12f 22276 . . . . . . 7 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((𝐽t (ℂ ∖ {0})) Cn 𝐽))
1099, 90syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
11032feq2d 6502 . . . . . . . . . 10 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
111109, 110mpbid 234 . . . . . . . . 9 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
112111, 4ffvelrnd 6854 . . . . . . . 8 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ℂ)
113109ffnd 6517 . . . . . . . . . 10 (𝜑 → (𝑆 D 𝐹) Fn dom (𝑆 D 𝐹))
114 fnfvelrn 6850 . . . . . . . . . 10 (((𝑆 D 𝐹) Fn dom (𝑆 D 𝐹) ∧ 𝐶 ∈ dom (𝑆 D 𝐹)) → ((𝑆 D 𝐹)‘𝐶) ∈ ran (𝑆 D 𝐹))
115113, 89, 114syl2anc 586 . . . . . . . . 9 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ran (𝑆 D 𝐹))
116 dvcnv.z . . . . . . . . 9 (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹))
117 nelne2 3117 . . . . . . . . 9 ((((𝑆 D 𝐹)‘𝐶) ∈ ran (𝑆 D 𝐹) ∧ ¬ 0 ∈ ran (𝑆 D 𝐹)) → ((𝑆 D 𝐹)‘𝐶) ≠ 0)
118115, 116, 117syl2anc 586 . . . . . . . 8 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ≠ 0)
119 eldifsn 4721 . . . . . . . 8 (((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0}) ↔ (((𝑆 D 𝐹)‘𝐶) ∈ ℂ ∧ ((𝑆 D 𝐹)‘𝐶) ≠ 0))
120112, 118, 119sylanbrc 585 . . . . . . 7 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0}))
121100toponunii 21526 . . . . . . . 8 (ℂ ∖ {0}) = (𝐽t (ℂ ∖ {0}))
122121cncnpi 21888 . . . . . . 7 (((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((𝐽t (ℂ ∖ {0})) Cn 𝐽) ∧ ((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0})) → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ (((𝐽t (ℂ ∖ {0})) CnP 𝐽)‘((𝑆 D 𝐹)‘𝐶)))
123108, 120, 122syl2anc 586 . . . . . 6 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ (((𝐽t (ℂ ∖ {0})) CnP 𝐽)‘((𝑆 D 𝐹)‘𝐶)))
12485, 87, 7, 88, 98, 123limccnp 24491 . . . . 5 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))‘((𝑆 D 𝐹)‘𝐶)) ∈ (((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) lim 𝐶))
125 oveq2 7166 . . . . . . 7 (𝑥 = ((𝑆 D 𝐹)‘𝐶) → (1 / 𝑥) = (1 / ((𝑆 D 𝐹)‘𝐶)))
126 eqid 2823 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))
127 ovex 7191 . . . . . . 7 (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ V
128125, 126, 127fvmpt 6770 . . . . . 6 (((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))‘((𝑆 D 𝐹)‘𝐶)) = (1 / ((𝑆 D 𝐹)‘𝐶)))
129120, 128syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))‘((𝑆 D 𝐹)‘𝐶)) = (1 / ((𝑆 D 𝐹)‘𝐶)))
130 eqidd 2824 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))))
131 eqidd 2824 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)))
132 oveq2 7166 . . . . . . . 8 (𝑥 = (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) → (1 / 𝑥) = (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))))
13384, 130, 131, 132fmptco 6893 . . . . . . 7 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))))
13450, 41, 63, 81recdivd 11435 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) = ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶))))
135134mpteq2dva 5163 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))))
136133, 135eqtrd 2858 . . . . . 6 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))))
137136oveq1d 7173 . . . . 5 (𝜑 → (((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) lim 𝐶) = ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))) lim 𝐶))
138124, 129, 1373eltr3d 2929 . . . 4 (𝜑 → (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))) lim 𝐶))
139 oveq1 7165 . . . . 5 (𝑦 = (𝐹𝑧) → (𝑦𝐶) = ((𝐹𝑧) − 𝐶))
140 fveq2 6672 . . . . . 6 (𝑦 = (𝐹𝑧) → (𝐹𝑦) = (𝐹‘(𝐹𝑧)))
141140oveq1d 7173 . . . . 5 (𝑦 = (𝐹𝑧) → ((𝐹𝑦) − (𝐹𝐶)) = ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))
142139, 141oveq12d 7176 . . . 4 (𝑦 = (𝐹𝑧) → ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶))) = (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))))
143 eldifsni 4724 . . . . . . . . 9 (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) → 𝑧 ≠ (𝐹𝐶))
144143adantl 484 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → 𝑧 ≠ (𝐹𝐶))
145144necomd 3073 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (𝐹𝐶) ≠ 𝑧)
146 f1ocnvfvb 7038 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝐶𝑋𝑧𝑌) → ((𝐹𝐶) = 𝑧 ↔ (𝐹𝑧) = 𝐶))
1471, 4, 24, 146syl2an3an 1418 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝐶) = 𝑧 ↔ (𝐹𝑧) = 𝐶))
148147necon3abid 3054 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝐶) ≠ 𝑧 ↔ ¬ (𝐹𝑧) = 𝐶))
149145, 148mpbid 234 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ¬ (𝐹𝑧) = 𝐶)
150149pm2.21d 121 . . . . 5 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝑧) = 𝐶 → (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))) = (1 / ((𝑆 D 𝐹)‘𝐶))))
151150impr 457 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ∧ (𝐹𝑧) = 𝐶)) → (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))) = (1 / ((𝑆 D 𝐹)‘𝐶)))
15230, 64, 79, 138, 142, 151limcco 24493 . . 3 (𝜑 → (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))) lim (𝐹𝐶)))
15375eqcomd 2829 . . . . . . . 8 (𝜑𝐶 = (𝐹‘(𝐹𝐶)))
154153adantr 483 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → 𝐶 = (𝐹‘(𝐹𝐶)))
155154oveq2d 7174 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝑧) − 𝐶) = ((𝐹𝑧) − (𝐹‘(𝐹𝐶))))
156 f1ocnvfv2 7036 . . . . . . . 8 ((𝐹:𝑋1-1-onto𝑌𝑧𝑌) → (𝐹‘(𝐹𝑧)) = 𝑧)
1571, 24, 156syl2an 597 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (𝐹‘(𝐹𝑧)) = 𝑧)
158157oveq1d 7173 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)) = (𝑧 − (𝐹𝐶)))
159155, 158oveq12d 7176 . . . . 5 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))) = (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶))))
160159mpteq2dva 5163 . . . 4 (𝜑 → (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))))
161160oveq1d 7173 . . 3 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))) lim (𝐹𝐶)) = ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) lim (𝐹𝐶)))
162152, 161eleqtrd 2917 . 2 (𝜑 → (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) lim (𝐹𝐶)))
163 eqid 2823 . . 3 (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶))))
16423, 35fssd 6530 . . 3 (𝜑𝐹:𝑌⟶ℂ)
1656, 7, 163, 11, 164, 43eldv 24498 . 2 (𝜑 → ((𝐹𝐶)(𝑆 D 𝐹)(1 / ((𝑆 D 𝐹)‘𝐶)) ↔ ((𝐹𝐶) ∈ ((int‘𝐾)‘𝑌) ∧ (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) lim (𝐹𝐶)))))
16620, 162, 165mpbir2and 711 1 (𝜑 → (𝐹𝐶)(𝑆 D 𝐹)(1 / ((𝑆 D 𝐹)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  cdif 3935  wss 3938  {csn 4569  {cpr 4571   class class class wbr 5068  cmpt 5148  ccnv 5556  dom cdm 5557  ran crn 5558  cres 5559  ccom 5561  Fun wfun 6351   Fn wfn 6352  wf 6353  1-1wf1 6354  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540  cmin 10872   / cdiv 11299  t crest 16696  TopOpenctopn 16697  fldccnfld 20547  Topctop 21503  TopOnctopon 21520  intcnt 21627   Cn ccn 21834   CnP ccnp 21835   ×t ctx 22170  cnccncf 23486   lim climc 24462   D cdv 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467
This theorem is referenced by:  dvcnv  24576
  Copyright terms: Public domain W3C validator