MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvlem Structured version   Visualization version   GIF version

Theorem dvcnvlem 25340
Description: Lemma for dvcnvre 25383. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
dvcnv.j 𝐽 = (TopOpen‘ℂfld)
dvcnv.k 𝐾 = (𝐽t 𝑆)
dvcnv.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvcnv.y (𝜑𝑌𝐾)
dvcnv.f (𝜑𝐹:𝑋1-1-onto𝑌)
dvcnv.i (𝜑𝐹 ∈ (𝑌cn𝑋))
dvcnv.d (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvcnv.z (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹))
dvcnv.c (𝜑𝐶𝑋)
Assertion
Ref Expression
dvcnvlem (𝜑 → (𝐹𝐶)(𝑆 D 𝐹)(1 / ((𝑆 D 𝐹)‘𝐶)))

Proof of Theorem dvcnvlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcnv.f . . . . 5 (𝜑𝐹:𝑋1-1-onto𝑌)
2 f1of 6784 . . . . 5 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
31, 2syl 17 . . . 4 (𝜑𝐹:𝑋𝑌)
4 dvcnv.c . . . 4 (𝜑𝐶𝑋)
53, 4ffvelcdmd 7036 . . 3 (𝜑 → (𝐹𝐶) ∈ 𝑌)
6 dvcnv.k . . . . . 6 𝐾 = (𝐽t 𝑆)
7 dvcnv.j . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
87cnfldtopon 24146 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
9 dvcnv.s . . . . . . . 8 (𝜑𝑆 ∈ {ℝ, ℂ})
10 recnprss 25268 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
119, 10syl 17 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
12 resttopon 22512 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
138, 11, 12sylancr 587 . . . . . 6 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
146, 13eqeltrid 2842 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑆))
15 topontop 22262 . . . . 5 (𝐾 ∈ (TopOn‘𝑆) → 𝐾 ∈ Top)
1614, 15syl 17 . . . 4 (𝜑𝐾 ∈ Top)
17 dvcnv.y . . . 4 (𝜑𝑌𝐾)
18 isopn3i 22433 . . . 4 ((𝐾 ∈ Top ∧ 𝑌𝐾) → ((int‘𝐾)‘𝑌) = 𝑌)
1916, 17, 18syl2anc 584 . . 3 (𝜑 → ((int‘𝐾)‘𝑌) = 𝑌)
205, 19eleqtrrd 2841 . 2 (𝜑 → (𝐹𝐶) ∈ ((int‘𝐾)‘𝑌))
21 f1ocnv 6796 . . . . . . . . 9 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
22 f1of 6784 . . . . . . . . 9 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
231, 21, 223syl 18 . . . . . . . 8 (𝜑𝐹:𝑌𝑋)
24 eldifi 4086 . . . . . . . 8 (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) → 𝑧𝑌)
25 ffvelcdm 7032 . . . . . . . 8 ((𝐹:𝑌𝑋𝑧𝑌) → (𝐹𝑧) ∈ 𝑋)
2623, 24, 25syl2an 596 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (𝐹𝑧) ∈ 𝑋)
2726anim1i 615 . . . . . 6 (((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) ∧ (𝐹𝑧) ≠ 𝐶) → ((𝐹𝑧) ∈ 𝑋 ∧ (𝐹𝑧) ≠ 𝐶))
28 eldifsn 4747 . . . . . 6 ((𝐹𝑧) ∈ (𝑋 ∖ {𝐶}) ↔ ((𝐹𝑧) ∈ 𝑋 ∧ (𝐹𝑧) ≠ 𝐶))
2927, 28sylibr 233 . . . . 5 (((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) ∧ (𝐹𝑧) ≠ 𝐶) → (𝐹𝑧) ∈ (𝑋 ∖ {𝐶}))
3029anasss 467 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ∧ (𝐹𝑧) ≠ 𝐶)) → (𝐹𝑧) ∈ (𝑋 ∖ {𝐶}))
31 eldifi 4086 . . . . . . 7 (𝑦 ∈ (𝑋 ∖ {𝐶}) → 𝑦𝑋)
32 dvcnv.d . . . . . . . . . 10 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
33 dvbsss 25266 . . . . . . . . . 10 dom (𝑆 D 𝐹) ⊆ 𝑆
3432, 33eqsstrrdi 3999 . . . . . . . . 9 (𝜑𝑋𝑆)
3534, 11sstrd 3954 . . . . . . . 8 (𝜑𝑋 ⊆ ℂ)
3635sselda 3944 . . . . . . 7 ((𝜑𝑦𝑋) → 𝑦 ∈ ℂ)
3731, 36sylan2 593 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝑦 ∈ ℂ)
3834, 4sseldd 3945 . . . . . . . 8 (𝜑𝐶𝑆)
3911, 38sseldd 3945 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
4039adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝐶 ∈ ℂ)
4137, 40subcld 11512 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝑦𝐶) ∈ ℂ)
42 toponss 22276 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑆) ∧ 𝑌𝐾) → 𝑌𝑆)
4314, 17, 42syl2anc 584 . . . . . . . . 9 (𝜑𝑌𝑆)
4443, 11sstrd 3954 . . . . . . . 8 (𝜑𝑌 ⊆ ℂ)
453, 44fssd 6686 . . . . . . 7 (𝜑𝐹:𝑋⟶ℂ)
46 ffvelcdm 7032 . . . . . . 7 ((𝐹:𝑋⟶ℂ ∧ 𝑦𝑋) → (𝐹𝑦) ∈ ℂ)
4745, 31, 46syl2an 596 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝑦) ∈ ℂ)
4844, 5sseldd 3945 . . . . . . 7 (𝜑 → (𝐹𝐶) ∈ ℂ)
4948adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
5047, 49subcld 11512 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑦) − (𝐹𝐶)) ∈ ℂ)
51 eldifsni 4750 . . . . . . 7 (𝑦 ∈ (𝑋 ∖ {𝐶}) → 𝑦𝐶)
5251adantl 482 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝑦𝐶)
5347, 49subeq0ad 11522 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) = 0 ↔ (𝐹𝑦) = (𝐹𝐶)))
54 f1of1 6783 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
551, 54syl 17 . . . . . . . . . 10 (𝜑𝐹:𝑋1-1𝑌)
5655adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝐹:𝑋1-1𝑌)
5731adantl 482 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝑦𝑋)
584adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → 𝐶𝑋)
59 f1fveq 7209 . . . . . . . . 9 ((𝐹:𝑋1-1𝑌 ∧ (𝑦𝑋𝐶𝑋)) → ((𝐹𝑦) = (𝐹𝐶) ↔ 𝑦 = 𝐶))
6056, 57, 58, 59syl12anc 835 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑦) = (𝐹𝐶) ↔ 𝑦 = 𝐶))
6153, 60bitrd 278 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) = 0 ↔ 𝑦 = 𝐶))
6261necon3bid 2988 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) ≠ 0 ↔ 𝑦𝐶))
6352, 62mpbird 256 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑦) − (𝐹𝐶)) ≠ 0)
6441, 50, 63divcld 11931 . . . 4 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶))) ∈ ℂ)
65 limcresi 25249 . . . . . 6 (𝐹 lim (𝐹𝐶)) ⊆ ((𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) lim (𝐹𝐶))
6623feqmptd 6910 . . . . . . . . 9 (𝜑𝐹 = (𝑧𝑌 ↦ (𝐹𝑧)))
6766reseq1d 5936 . . . . . . . 8 (𝜑 → (𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) = ((𝑧𝑌 ↦ (𝐹𝑧)) ↾ (𝑌 ∖ {(𝐹𝐶)})))
68 difss 4091 . . . . . . . . 9 (𝑌 ∖ {(𝐹𝐶)}) ⊆ 𝑌
69 resmpt 5991 . . . . . . . . 9 ((𝑌 ∖ {(𝐹𝐶)}) ⊆ 𝑌 → ((𝑧𝑌 ↦ (𝐹𝑧)) ↾ (𝑌 ∖ {(𝐹𝐶)})) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)))
7068, 69ax-mp 5 . . . . . . . 8 ((𝑧𝑌 ↦ (𝐹𝑧)) ↾ (𝑌 ∖ {(𝐹𝐶)})) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧))
7167, 70eqtrdi 2792 . . . . . . 7 (𝜑 → (𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)))
7271oveq1d 7372 . . . . . 6 (𝜑 → ((𝐹 ↾ (𝑌 ∖ {(𝐹𝐶)})) lim (𝐹𝐶)) = ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)) lim (𝐹𝐶)))
7365, 72sseqtrid 3996 . . . . 5 (𝜑 → (𝐹 lim (𝐹𝐶)) ⊆ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)) lim (𝐹𝐶)))
74 f1ocnvfv1 7222 . . . . . . 7 ((𝐹:𝑋1-1-onto𝑌𝐶𝑋) → (𝐹‘(𝐹𝐶)) = 𝐶)
751, 4, 74syl2anc 584 . . . . . 6 (𝜑 → (𝐹‘(𝐹𝐶)) = 𝐶)
76 dvcnv.i . . . . . . 7 (𝜑𝐹 ∈ (𝑌cn𝑋))
7776, 5cnlimci 25253 . . . . . 6 (𝜑 → (𝐹‘(𝐹𝐶)) ∈ (𝐹 lim (𝐹𝐶)))
7875, 77eqeltrrd 2839 . . . . 5 (𝜑𝐶 ∈ (𝐹 lim (𝐹𝐶)))
7973, 78sseldd 3945 . . . 4 (𝜑𝐶 ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (𝐹𝑧)) lim (𝐹𝐶)))
8045, 35, 4dvlem 25260 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ ℂ)
8137, 40, 52subne0d 11521 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (𝑦𝐶) ≠ 0)
8250, 41, 63, 81divne0d 11947 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ≠ 0)
83 eldifsn 4747 . . . . . . . 8 ((((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ (ℂ ∖ {0}) ↔ ((((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ ℂ ∧ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ≠ 0))
8480, 82, 83sylanbrc 583 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) ∈ (ℂ ∖ {0}))
8584fmpttd 7063 . . . . . 6 (𝜑 → (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))):(𝑋 ∖ {𝐶})⟶(ℂ ∖ {0}))
86 difss 4091 . . . . . . 7 (ℂ ∖ {0}) ⊆ ℂ
8786a1i 11 . . . . . 6 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
88 eqid 2736 . . . . . 6 (𝐽t (ℂ ∖ {0})) = (𝐽t (ℂ ∖ {0}))
894, 32eleqtrrd 2841 . . . . . . . . 9 (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
90 dvfg 25270 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
91 ffun 6671 . . . . . . . . . 10 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
92 funfvbrb 7001 . . . . . . . . . 10 (Fun (𝑆 D 𝐹) → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
939, 90, 91, 924syl 19 . . . . . . . . 9 (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
9489, 93mpbid 231 . . . . . . . 8 (𝜑𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))
95 eqid 2736 . . . . . . . . 9 (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))
966, 7, 95, 11, 45, 34eldv 25262 . . . . . . . 8 (𝜑 → (𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶) ↔ (𝐶 ∈ ((int‘𝐾)‘𝑋) ∧ ((𝑆 D 𝐹)‘𝐶) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) lim 𝐶))))
9794, 96mpbid 231 . . . . . . 7 (𝜑 → (𝐶 ∈ ((int‘𝐾)‘𝑋) ∧ ((𝑆 D 𝐹)‘𝐶) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) lim 𝐶)))
9897simprd 496 . . . . . 6 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) lim 𝐶))
99 resttopon 22512 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1008, 86, 99mp2an 690 . . . . . . . . 9 (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0}))
101100a1i 11 . . . . . . . 8 (𝜑 → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1028a1i 11 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘ℂ))
103 1cnd 11150 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
104101, 102, 103cnmptc 23013 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ 1) ∈ ((𝐽t (ℂ ∖ {0})) Cn 𝐽))
105101cnmptid 23012 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ 𝑥) ∈ ((𝐽t (ℂ ∖ {0})) Cn (𝐽t (ℂ ∖ {0}))))
1067, 88divcn 24231 . . . . . . . . 9 / ∈ ((𝐽 ×t (𝐽t (ℂ ∖ {0}))) Cn 𝐽)
107106a1i 11 . . . . . . . 8 (𝜑 → / ∈ ((𝐽 ×t (𝐽t (ℂ ∖ {0}))) Cn 𝐽))
108101, 104, 105, 107cnmpt12f 23017 . . . . . . 7 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((𝐽t (ℂ ∖ {0})) Cn 𝐽))
1099, 90syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
11032feq2d 6654 . . . . . . . . . 10 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
111109, 110mpbid 231 . . . . . . . . 9 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
112111, 4ffvelcdmd 7036 . . . . . . . 8 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ℂ)
113109ffnd 6669 . . . . . . . . . 10 (𝜑 → (𝑆 D 𝐹) Fn dom (𝑆 D 𝐹))
114 fnfvelrn 7031 . . . . . . . . . 10 (((𝑆 D 𝐹) Fn dom (𝑆 D 𝐹) ∧ 𝐶 ∈ dom (𝑆 D 𝐹)) → ((𝑆 D 𝐹)‘𝐶) ∈ ran (𝑆 D 𝐹))
115113, 89, 114syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ran (𝑆 D 𝐹))
116 dvcnv.z . . . . . . . . 9 (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹))
117 nelne2 3042 . . . . . . . . 9 ((((𝑆 D 𝐹)‘𝐶) ∈ ran (𝑆 D 𝐹) ∧ ¬ 0 ∈ ran (𝑆 D 𝐹)) → ((𝑆 D 𝐹)‘𝐶) ≠ 0)
118115, 116, 117syl2anc 584 . . . . . . . 8 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ≠ 0)
119 eldifsn 4747 . . . . . . . 8 (((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0}) ↔ (((𝑆 D 𝐹)‘𝐶) ∈ ℂ ∧ ((𝑆 D 𝐹)‘𝐶) ≠ 0))
120112, 118, 119sylanbrc 583 . . . . . . 7 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0}))
121100toponunii 22265 . . . . . . . 8 (ℂ ∖ {0}) = (𝐽t (ℂ ∖ {0}))
122121cncnpi 22629 . . . . . . 7 (((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((𝐽t (ℂ ∖ {0})) Cn 𝐽) ∧ ((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0})) → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ (((𝐽t (ℂ ∖ {0})) CnP 𝐽)‘((𝑆 D 𝐹)‘𝐶)))
123108, 120, 122syl2anc 584 . . . . . 6 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ (((𝐽t (ℂ ∖ {0})) CnP 𝐽)‘((𝑆 D 𝐹)‘𝐶)))
12485, 87, 7, 88, 98, 123limccnp 25255 . . . . 5 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))‘((𝑆 D 𝐹)‘𝐶)) ∈ (((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) lim 𝐶))
125 oveq2 7365 . . . . . . 7 (𝑥 = ((𝑆 D 𝐹)‘𝐶) → (1 / 𝑥) = (1 / ((𝑆 D 𝐹)‘𝐶)))
126 eqid 2736 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))
127 ovex 7390 . . . . . . 7 (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ V
128125, 126, 127fvmpt 6948 . . . . . 6 (((𝑆 D 𝐹)‘𝐶) ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))‘((𝑆 D 𝐹)‘𝐶)) = (1 / ((𝑆 D 𝐹)‘𝐶)))
129120, 128syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))‘((𝑆 D 𝐹)‘𝐶)) = (1 / ((𝑆 D 𝐹)‘𝐶)))
130 eqidd 2737 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))))
131 eqidd 2737 . . . . . . . 8 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)))
132 oveq2 7365 . . . . . . . 8 (𝑥 = (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)) → (1 / 𝑥) = (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))))
13384, 130, 131, 132fmptco 7075 . . . . . . 7 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))))
13450, 41, 63, 81recdivd 11948 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ {𝐶})) → (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶))) = ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶))))
135134mpteq2dva 5205 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (1 / (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))))
136133, 135eqtrd 2776 . . . . . 6 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) = (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))))
137136oveq1d 7372 . . . . 5 (𝜑 → (((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑦) − (𝐹𝐶)) / (𝑦𝐶)))) lim 𝐶) = ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))) lim 𝐶))
138124, 129, 1373eltr3d 2852 . . . 4 (𝜑 → (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑦 ∈ (𝑋 ∖ {𝐶}) ↦ ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶)))) lim 𝐶))
139 oveq1 7364 . . . . 5 (𝑦 = (𝐹𝑧) → (𝑦𝐶) = ((𝐹𝑧) − 𝐶))
140 fveq2 6842 . . . . . 6 (𝑦 = (𝐹𝑧) → (𝐹𝑦) = (𝐹‘(𝐹𝑧)))
141140oveq1d 7372 . . . . 5 (𝑦 = (𝐹𝑧) → ((𝐹𝑦) − (𝐹𝐶)) = ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))
142139, 141oveq12d 7375 . . . 4 (𝑦 = (𝐹𝑧) → ((𝑦𝐶) / ((𝐹𝑦) − (𝐹𝐶))) = (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))))
143 eldifsni 4750 . . . . . . . . 9 (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) → 𝑧 ≠ (𝐹𝐶))
144143adantl 482 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → 𝑧 ≠ (𝐹𝐶))
145144necomd 2999 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (𝐹𝐶) ≠ 𝑧)
146 f1ocnvfvb 7225 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝐶𝑋𝑧𝑌) → ((𝐹𝐶) = 𝑧 ↔ (𝐹𝑧) = 𝐶))
1471, 4, 24, 146syl2an3an 1422 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝐶) = 𝑧 ↔ (𝐹𝑧) = 𝐶))
148147necon3abid 2980 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝐶) ≠ 𝑧 ↔ ¬ (𝐹𝑧) = 𝐶))
149145, 148mpbid 231 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ¬ (𝐹𝑧) = 𝐶)
150149pm2.21d 121 . . . . 5 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝑧) = 𝐶 → (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))) = (1 / ((𝑆 D 𝐹)‘𝐶))))
151150impr 455 . . . 4 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ∧ (𝐹𝑧) = 𝐶)) → (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))) = (1 / ((𝑆 D 𝐹)‘𝐶)))
15230, 64, 79, 138, 142, 151limcco 25257 . . 3 (𝜑 → (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))) lim (𝐹𝐶)))
15375eqcomd 2742 . . . . . . . 8 (𝜑𝐶 = (𝐹‘(𝐹𝐶)))
154153adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → 𝐶 = (𝐹‘(𝐹𝐶)))
155154oveq2d 7373 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹𝑧) − 𝐶) = ((𝐹𝑧) − (𝐹‘(𝐹𝐶))))
156 f1ocnvfv2 7223 . . . . . . . 8 ((𝐹:𝑋1-1-onto𝑌𝑧𝑌) → (𝐹‘(𝐹𝑧)) = 𝑧)
1571, 24, 156syl2an 596 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (𝐹‘(𝐹𝑧)) = 𝑧)
158157oveq1d 7372 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)) = (𝑧 − (𝐹𝐶)))
159155, 158oveq12d 7375 . . . . 5 ((𝜑𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)})) → (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶))) = (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶))))
160159mpteq2dva 5205 . . . 4 (𝜑 → (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))))
161160oveq1d 7372 . . 3 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − 𝐶) / ((𝐹‘(𝐹𝑧)) − (𝐹𝐶)))) lim (𝐹𝐶)) = ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) lim (𝐹𝐶)))
162152, 161eleqtrd 2840 . 2 (𝜑 → (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) lim (𝐹𝐶)))
163 eqid 2736 . . 3 (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) = (𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶))))
16423, 35fssd 6686 . . 3 (𝜑𝐹:𝑌⟶ℂ)
1656, 7, 163, 11, 164, 43eldv 25262 . 2 (𝜑 → ((𝐹𝐶)(𝑆 D 𝐹)(1 / ((𝑆 D 𝐹)‘𝐶)) ↔ ((𝐹𝐶) ∈ ((int‘𝐾)‘𝑌) ∧ (1 / ((𝑆 D 𝐹)‘𝐶)) ∈ ((𝑧 ∈ (𝑌 ∖ {(𝐹𝐶)}) ↦ (((𝐹𝑧) − (𝐹‘(𝐹𝐶))) / (𝑧 − (𝐹𝐶)))) lim (𝐹𝐶)))))
16620, 162, 165mpbir2and 711 1 (𝜑 → (𝐹𝐶)(𝑆 D 𝐹)(1 / ((𝑆 D 𝐹)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  cdif 3907  wss 3910  {csn 4586  {cpr 4588   class class class wbr 5105  cmpt 5188  ccnv 5632  dom cdm 5633  ran crn 5634  cres 5635  ccom 5637  Fun wfun 6490   Fn wfn 6491  wf 6492  1-1wf1 6493  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052  cmin 11385   / cdiv 11812  t crest 17302  TopOpenctopn 17303  fldccnfld 20796  Topctop 22242  TopOnctopon 22259  intcnt 22368   Cn ccn 22575   CnP ccnp 22576   ×t ctx 22911  cnccncf 24239   lim climc 25226   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  dvcnv  25341
  Copyright terms: Public domain W3C validator