MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelval Structured version   Visualization version   GIF version

Theorem lsmelval 18749
Description: Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmelval.a + = (+g𝐺)
lsmelval.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmelval ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧)))
Distinct variable groups:   𝑦,𝑧, +   𝑦,𝑇,𝑧   𝑦,𝑈,𝑧   𝑦,𝐺,𝑧   𝑦,𝑋,𝑧
Allowed substitution hints:   (𝑦,𝑧)

Proof of Theorem lsmelval
StepHypRef Expression
1 subgrcl 18259 . 2 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2 eqid 2820 . . 3 (Base‘𝐺) = (Base‘𝐺)
32subgss 18255 . 2 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
42subgss 18255 . 2 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
5 lsmelval.a . . 3 + = (+g𝐺)
6 lsmelval.p . . 3 = (LSSum‘𝐺)
72, 5, 6lsmelvalx 18740 . 2 ((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧)))
81, 3, 4, 7syl2an3an 1418 1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3126  wss 3909  cfv 6327  (class class class)co 7129  Basecbs 16458  +gcplusg 16540  Grpcgrp 18078  SubGrpcsubg 18248  LSSumclsm 18734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5162  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4811  df-iun 4893  df-br 5039  df-opab 5101  df-mpt 5119  df-id 5432  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-ov 7132  df-oprab 7133  df-mpo 7134  df-1st 7663  df-2nd 7664  df-subg 18251  df-lsm 18736
This theorem is referenced by:  lsmelvalm  18751  lsmsubg  18754  lsmcom2  18755  lsmmod  18776  lsmdisj2  18783  pj1eu  18797  lsmcl  19827  lsmspsn  19828  lsmelval2  19829  lsmcv  19885  lindsunlem  31027  lsmsat  36176  lshpsmreu  36277  dvhopellsm  38285  diblsmopel  38339  cdlemn11c  38377  dihord11c  38392  hdmapglem7a  39095
  Copyright terms: Public domain W3C validator