Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmelval | Structured version Visualization version GIF version |
Description: Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmelval.a | ⊢ + = (+g‘𝐺) |
lsmelval.p | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmelval | ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgrcl 18756 | . 2 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
2 | eqid 2740 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | 2 | subgss 18752 | . 2 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
4 | 2 | subgss 18752 | . 2 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
5 | lsmelval.a | . . 3 ⊢ + = (+g‘𝐺) | |
6 | lsmelval.p | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
7 | 2, 5, 6 | lsmelvalx 19241 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧))) |
8 | 1, 3, 4, 7 | syl2an3an 1421 | 1 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∃wrex 3067 ⊆ wss 3892 ‘cfv 6431 (class class class)co 7269 Basecbs 16908 +gcplusg 16958 Grpcgrp 18573 SubGrpcsubg 18745 LSSumclsm 19235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-1st 7822 df-2nd 7823 df-subg 18748 df-lsm 19237 |
This theorem is referenced by: lsmelvalm 19252 lsmsubg 19255 lsmcom2 19256 lsmmod 19277 lsmdisj2 19284 pj1eu 19298 lsmcl 20341 lsmspsn 20342 lsmelval2 20343 lsmcv 20399 lindsunlem 31699 lsmsat 37016 lshpsmreu 37117 dvhopellsm 39125 diblsmopel 39179 cdlemn11c 39217 dihord11c 39232 hdmapglem7a 39935 |
Copyright terms: Public domain | W3C validator |