MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelval Structured version   Visualization version   GIF version

Theorem lsmelval 19681
Description: Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmelval.a + = (+g𝐺)
lsmelval.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmelval ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧)))
Distinct variable groups:   𝑦,𝑧, +   𝑦,𝑇,𝑧   𝑦,𝑈,𝑧   𝑦,𝐺,𝑧   𝑦,𝑋,𝑧
Allowed substitution hints:   (𝑦,𝑧)

Proof of Theorem lsmelval
StepHypRef Expression
1 subgrcl 19161 . 2 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2 eqid 2734 . . 3 (Base‘𝐺) = (Base‘𝐺)
32subgss 19157 . 2 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
42subgss 19157 . 2 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
5 lsmelval.a . . 3 + = (+g𝐺)
6 lsmelval.p . . 3 = (LSSum‘𝐺)
72, 5, 6lsmelvalx 19672 . 2 ((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧)))
81, 3, 4, 7syl2an3an 1421 1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wrex 3067  wss 3962  cfv 6562  (class class class)co 7430  Basecbs 17244  +gcplusg 17297  Grpcgrp 18963  SubGrpcsubg 19150  LSSumclsm 19666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-subg 19153  df-lsm 19668
This theorem is referenced by:  lsmelvalm  19683  lsmsubg  19686  lsmcom2  19687  lsmmod  19707  lsmdisj2  19714  pj1eu  19728  lsmcl  21099  lsmspsn  21100  lsmelval2  21101  lsmcv  21160  lindsunlem  33651  lsmsat  38989  lshpsmreu  39090  dvhopellsm  41099  diblsmopel  41153  cdlemn11c  41191  dihord11c  41206  hdmapglem7a  41909
  Copyright terms: Public domain W3C validator