MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2lem3 Structured version   Visualization version   GIF version

Theorem ostth2lem3 26983
Description: Lemma for ostth2 26985. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth2.2 (𝜑𝑁 ∈ (ℤ‘2))
ostth2.3 (𝜑 → 1 < (𝐹𝑁))
ostth2.4 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
ostth2.5 (𝜑𝑀 ∈ (ℤ‘2))
ostth2.6 𝑆 = ((log‘(𝐹𝑀)) / (log‘𝑀))
ostth2.7 𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))
ostth2.8 𝑈 = ((log‘𝑁) / (log‘𝑀))
Assertion
Ref Expression
ostth2lem3 ((𝜑𝑋 ∈ ℕ) → (((𝐹𝑁) / (𝑇𝑐𝑈))↑𝑋) ≤ (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑞,𝜑   𝑥,𝑇   𝑥,𝑈   𝑥,𝑋   𝐴,𝑞,𝑥   𝑥,𝑁   𝑥,𝑄   𝐹,𝑞   𝑅,𝑞   𝑥,𝐹
Allowed substitution hints:   𝑄(𝑞)   𝑅(𝑥)   𝑆(𝑥,𝑞)   𝑇(𝑞)   𝑈(𝑞)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑞)   𝑀(𝑞)   𝑁(𝑞)   𝑋(𝑞)

Proof of Theorem ostth2lem3
StepHypRef Expression
1 ostth.1 . . . . . 6 (𝜑𝐹𝐴)
2 ostth2.2 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ‘2))
3 eluz2b2 12846 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
42, 3sylib 217 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
54simpld 495 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
6 nnq 12887 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
75, 6syl 17 . . . . . 6 (𝜑𝑁 ∈ ℚ)
8 qabsabv.a . . . . . . 7 𝐴 = (AbsVal‘𝑄)
9 qrng.q . . . . . . . 8 𝑄 = (ℂflds ℚ)
109qrngbas 26967 . . . . . . 7 ℚ = (Base‘𝑄)
118, 10abvcl 20283 . . . . . 6 ((𝐹𝐴𝑁 ∈ ℚ) → (𝐹𝑁) ∈ ℝ)
121, 7, 11syl2anc 584 . . . . 5 (𝜑 → (𝐹𝑁) ∈ ℝ)
1312adantr 481 . . . 4 ((𝜑𝑋 ∈ ℕ) → (𝐹𝑁) ∈ ℝ)
1413recnd 11183 . . 3 ((𝜑𝑋 ∈ ℕ) → (𝐹𝑁) ∈ ℂ)
15 ostth2.7 . . . . . . 7 𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))
16 1re 11155 . . . . . . . 8 1 ∈ ℝ
17 ostth2.5 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘2))
18 eluz2b2 12846 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 1 < 𝑀))
1917, 18sylib 217 . . . . . . . . . . 11 (𝜑 → (𝑀 ∈ ℕ ∧ 1 < 𝑀))
2019simpld 495 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
21 nnq 12887 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
2220, 21syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ ℚ)
238, 10abvcl 20283 . . . . . . . . 9 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℝ)
241, 22, 23syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹𝑀) ∈ ℝ)
25 ifcl 4531 . . . . . . . 8 ((1 ∈ ℝ ∧ (𝐹𝑀) ∈ ℝ) → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) ∈ ℝ)
2616, 24, 25sylancr 587 . . . . . . 7 (𝜑 → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) ∈ ℝ)
2715, 26eqeltrid 2842 . . . . . 6 (𝜑𝑇 ∈ ℝ)
2827adantr 481 . . . . 5 ((𝜑𝑋 ∈ ℕ) → 𝑇 ∈ ℝ)
29 0red 11158 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
30 1red 11156 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
31 0lt1 11677 . . . . . . . . . 10 0 < 1
3231a1i 11 . . . . . . . . 9 (𝜑 → 0 < 1)
33 max2 13106 . . . . . . . . . . 11 (((𝐹𝑀) ∈ ℝ ∧ 1 ∈ ℝ) → 1 ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
3424, 30, 33syl2anc 584 . . . . . . . . . 10 (𝜑 → 1 ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
3534, 15breqtrrdi 5147 . . . . . . . . 9 (𝜑 → 1 ≤ 𝑇)
3629, 30, 27, 32, 35ltletrd 11315 . . . . . . . 8 (𝜑 → 0 < 𝑇)
3736adantr 481 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → 0 < 𝑇)
3828, 37elrpd 12954 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → 𝑇 ∈ ℝ+)
3938rpge0d 12961 . . . . 5 ((𝜑𝑋 ∈ ℕ) → 0 ≤ 𝑇)
40 ostth2.8 . . . . . . . 8 𝑈 = ((log‘𝑁) / (log‘𝑀))
415nnred 12168 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
424simprd 496 . . . . . . . . . 10 (𝜑 → 1 < 𝑁)
4341, 42rplogcld 25984 . . . . . . . . 9 (𝜑 → (log‘𝑁) ∈ ℝ+)
4420nnred 12168 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
4519simprd 496 . . . . . . . . . 10 (𝜑 → 1 < 𝑀)
4644, 45rplogcld 25984 . . . . . . . . 9 (𝜑 → (log‘𝑀) ∈ ℝ+)
4743, 46rpdivcld 12974 . . . . . . . 8 (𝜑 → ((log‘𝑁) / (log‘𝑀)) ∈ ℝ+)
4840, 47eqeltrid 2842 . . . . . . 7 (𝜑𝑈 ∈ ℝ+)
4948rpred 12957 . . . . . 6 (𝜑𝑈 ∈ ℝ)
5049adantr 481 . . . . 5 ((𝜑𝑋 ∈ ℕ) → 𝑈 ∈ ℝ)
5128, 39, 50recxpcld 26078 . . . 4 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐𝑈) ∈ ℝ)
5251recnd 11183 . . 3 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐𝑈) ∈ ℂ)
5338, 50rpcxpcld 26087 . . . 4 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐𝑈) ∈ ℝ+)
5453rpne0d 12962 . . 3 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐𝑈) ≠ 0)
55 nnnn0 12420 . . . 4 (𝑋 ∈ ℕ → 𝑋 ∈ ℕ0)
5655adantl 482 . . 3 ((𝜑𝑋 ∈ ℕ) → 𝑋 ∈ ℕ0)
5714, 52, 54, 56expdivd 14065 . 2 ((𝜑𝑋 ∈ ℕ) → (((𝐹𝑁) / (𝑇𝑐𝑈))↑𝑋) = (((𝐹𝑁)↑𝑋) / ((𝑇𝑐𝑈)↑𝑋)))
58 reexpcl 13984 . . . . . 6 (((𝐹𝑁) ∈ ℝ ∧ 𝑋 ∈ ℕ0) → ((𝐹𝑁)↑𝑋) ∈ ℝ)
5912, 55, 58syl2an 596 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝐹𝑁)↑𝑋) ∈ ℝ)
6020adantr 481 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → 𝑀 ∈ ℕ)
6160nnred 12168 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → 𝑀 ∈ ℝ)
62 nnre 12160 . . . . . . . . . . . 12 (𝑋 ∈ ℕ → 𝑋 ∈ ℝ)
6362adantl 482 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 𝑋 ∈ ℝ)
6463, 50remulcld 11185 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑋 · 𝑈) ∈ ℝ)
6556nn0ge0d 12476 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 0 ≤ 𝑋)
6648rpge0d 12961 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑈)
6766adantr 481 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 0 ≤ 𝑈)
6863, 50, 65, 67mulge0d 11732 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → 0 ≤ (𝑋 · 𝑈))
69 flge0nn0 13725 . . . . . . . . . 10 (((𝑋 · 𝑈) ∈ ℝ ∧ 0 ≤ (𝑋 · 𝑈)) → (⌊‘(𝑋 · 𝑈)) ∈ ℕ0)
7064, 68, 69syl2anc 584 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → (⌊‘(𝑋 · 𝑈)) ∈ ℕ0)
71 peano2nn0 12453 . . . . . . . . 9 ((⌊‘(𝑋 · 𝑈)) ∈ ℕ0 → ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℕ0)
7270, 71syl 17 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℕ0)
7372nn0red 12474 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℝ)
7461, 73remulcld 11185 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℝ)
7528, 72reexpcld 14068 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℝ)
7674, 75remulcld 11185 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ∈ ℝ)
77 peano2re 11328 . . . . . . . . 9 (𝑈 ∈ ℝ → (𝑈 + 1) ∈ ℝ)
7850, 77syl 17 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑈 + 1) ∈ ℝ)
7963, 78remulcld 11185 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (𝑈 + 1)) ∈ ℝ)
8061, 79remulcld 11185 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝑀 · (𝑋 · (𝑈 + 1))) ∈ ℝ)
8151, 56reexpcld 14068 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑇𝑐𝑈)↑𝑋) ∈ ℝ)
8281, 28remulcld 11185 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (((𝑇𝑐𝑈)↑𝑋) · 𝑇) ∈ ℝ)
8380, 82remulcld 11185 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)) ∈ ℝ)
849, 8qabvexp 26974 . . . . . . 7 ((𝐹𝐴𝑁 ∈ ℚ ∧ 𝑋 ∈ ℕ0) → (𝐹‘(𝑁𝑋)) = ((𝐹𝑁)↑𝑋))
851, 7, 55, 84syl2an3an 1422 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝐹‘(𝑁𝑋)) = ((𝐹𝑁)↑𝑋))
8663recnd 11183 . . . . . . . . . . . . . . . 16 ((𝜑𝑋 ∈ ℕ) → 𝑋 ∈ ℂ)
8743rpred 12957 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘𝑁) ∈ ℝ)
8887recnd 11183 . . . . . . . . . . . . . . . . 17 (𝜑 → (log‘𝑁) ∈ ℂ)
8988adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑋 ∈ ℕ) → (log‘𝑁) ∈ ℂ)
9046rpred 12957 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘𝑀) ∈ ℝ)
9190recnd 11183 . . . . . . . . . . . . . . . . 17 (𝜑 → (log‘𝑀) ∈ ℂ)
9291adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑋 ∈ ℕ) → (log‘𝑀) ∈ ℂ)
9346adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑋 ∈ ℕ) → (log‘𝑀) ∈ ℝ+)
9493rpne0d 12962 . . . . . . . . . . . . . . . 16 ((𝜑𝑋 ∈ ℕ) → (log‘𝑀) ≠ 0)
9586, 89, 92, 94divassd 11966 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · (log‘𝑁)) / (log‘𝑀)) = (𝑋 · ((log‘𝑁) / (log‘𝑀))))
9640oveq2i 7368 . . . . . . . . . . . . . . 15 (𝑋 · 𝑈) = (𝑋 · ((log‘𝑁) / (log‘𝑀)))
9795, 96eqtr4di 2794 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · (log‘𝑁)) / (log‘𝑀)) = (𝑋 · 𝑈))
9897oveq1d 7372 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ ℕ) → (((𝑋 · (log‘𝑁)) / (log‘𝑀)) · (log‘𝑀)) = ((𝑋 · 𝑈) · (log‘𝑀)))
9986, 89mulcld 11175 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (log‘𝑁)) ∈ ℂ)
10099, 92, 94divcan1d 11932 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ ℕ) → (((𝑋 · (log‘𝑁)) / (log‘𝑀)) · (log‘𝑀)) = (𝑋 · (log‘𝑁)))
10198, 100eqtr3d 2778 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) · (log‘𝑀)) = (𝑋 · (log‘𝑁)))
102 flltp1 13705 . . . . . . . . . . . . . 14 ((𝑋 · 𝑈) ∈ ℝ → (𝑋 · 𝑈) < ((⌊‘(𝑋 · 𝑈)) + 1))
10364, 102syl 17 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ ℕ) → (𝑋 · 𝑈) < ((⌊‘(𝑋 · 𝑈)) + 1))
10464, 73, 93, 103ltmul1dd 13012 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) · (log‘𝑀)) < (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)))
105101, 104eqbrtrrd 5129 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (log‘𝑁)) < (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)))
10687adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ ℕ) → (log‘𝑁) ∈ ℝ)
10763, 106remulcld 11185 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (log‘𝑁)) ∈ ℝ)
10890adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ ℕ) → (log‘𝑀) ∈ ℝ)
10973, 108remulcld 11185 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)) ∈ ℝ)
110 eflt 15999 . . . . . . . . . . . 12 (((𝑋 · (log‘𝑁)) ∈ ℝ ∧ (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)) ∈ ℝ) → ((𝑋 · (log‘𝑁)) < (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)) ↔ (exp‘(𝑋 · (log‘𝑁))) < (exp‘(((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)))))
111107, 109, 110syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · (log‘𝑁)) < (((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)) ↔ (exp‘(𝑋 · (log‘𝑁))) < (exp‘(((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀)))))
112105, 111mpbid 231 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (exp‘(𝑋 · (log‘𝑁))) < (exp‘(((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀))))
1135nnrpd 12955 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ+)
114 nnz 12520 . . . . . . . . . . 11 (𝑋 ∈ ℕ → 𝑋 ∈ ℤ)
115 reexplog 25950 . . . . . . . . . . 11 ((𝑁 ∈ ℝ+𝑋 ∈ ℤ) → (𝑁𝑋) = (exp‘(𝑋 · (log‘𝑁))))
116113, 114, 115syl2an 596 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) = (exp‘(𝑋 · (log‘𝑁))))
11760nnrpd 12955 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 𝑀 ∈ ℝ+)
11872nn0zd 12525 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℤ)
119 reexplog 25950 . . . . . . . . . . 11 ((𝑀 ∈ ℝ+ ∧ ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℤ) → (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) = (exp‘(((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀))))
120117, 118, 119syl2anc 584 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) = (exp‘(((⌊‘(𝑋 · 𝑈)) + 1) · (log‘𝑀))))
121112, 116, 1203brtr4d 5137 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) < (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)))
122 nnexpcl 13980 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℕ0) → (𝑁𝑋) ∈ ℕ)
1235, 55, 122syl2an 596 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) ∈ ℕ)
12460, 72nnexpcld 14148 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℕ)
125 nnltlem1 12570 . . . . . . . . . 10 (((𝑁𝑋) ∈ ℕ ∧ (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℕ) → ((𝑁𝑋) < (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ↔ (𝑁𝑋) ≤ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)))
126123, 124, 125syl2anc 584 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((𝑁𝑋) < (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ↔ (𝑁𝑋) ≤ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)))
127121, 126mpbid 231 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) ≤ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1))
128123nnnn0d 12473 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) ∈ ℕ0)
129 nn0uz 12805 . . . . . . . . . 10 0 = (ℤ‘0)
130128, 129eleqtrdi 2848 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) ∈ (ℤ‘0))
131124nnzd 12526 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℤ)
132 peano2zm 12546 . . . . . . . . . 10 ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℤ → ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1) ∈ ℤ)
133131, 132syl 17 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1) ∈ ℤ)
134 elfz5 13433 . . . . . . . . 9 (((𝑁𝑋) ∈ (ℤ‘0) ∧ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1) ∈ ℤ) → ((𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)) ↔ (𝑁𝑋) ≤ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)))
135130, 133, 134syl2anc 584 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → ((𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)) ↔ (𝑁𝑋) ≤ ((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)))
136127, 135mpbird 256 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → (𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)))
137 padic.j . . . . . . . . . 10 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
138 ostth.k . . . . . . . . . 10 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
139 ostth2.3 . . . . . . . . . 10 (𝜑 → 1 < (𝐹𝑁))
140 ostth2.4 . . . . . . . . . 10 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
141 ostth2.6 . . . . . . . . . 10 𝑆 = ((log‘(𝐹𝑀)) / (log‘𝑀))
1429, 8, 137, 138, 1, 2, 139, 140, 17, 141, 15ostth2lem2 26982 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℕ0 ∧ (𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1))) → (𝐹‘(𝑁𝑋)) ≤ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))))
1431423expia 1121 . . . . . . . 8 ((𝜑 ∧ ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℕ0) → ((𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)) → (𝐹‘(𝑁𝑋)) ≤ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))))
14472, 143syldan 591 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑁𝑋) ∈ (0...((𝑀↑((⌊‘(𝑋 · 𝑈)) + 1)) − 1)) → (𝐹‘(𝑁𝑋)) ≤ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))))
145136, 144mpd 15 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝐹‘(𝑁𝑋)) ≤ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))))
14685, 145eqbrtrrd 5129 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝐹𝑁)↑𝑋) ≤ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))))
14780, 75remulcld 11185 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ∈ ℝ)
148 peano2re 11328 . . . . . . . . . 10 ((𝑋 · 𝑈) ∈ ℝ → ((𝑋 · 𝑈) + 1) ∈ ℝ)
14964, 148syl 17 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) + 1) ∈ ℝ)
15070nn0red 12474 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (⌊‘(𝑋 · 𝑈)) ∈ ℝ)
151 1red 11156 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → 1 ∈ ℝ)
152 flle 13704 . . . . . . . . . . 11 ((𝑋 · 𝑈) ∈ ℝ → (⌊‘(𝑋 · 𝑈)) ≤ (𝑋 · 𝑈))
15364, 152syl 17 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (⌊‘(𝑋 · 𝑈)) ≤ (𝑋 · 𝑈))
154150, 64, 151, 153leadd1dd 11769 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((⌊‘(𝑋 · 𝑈)) + 1) ≤ ((𝑋 · 𝑈) + 1))
155 nnge1 12181 . . . . . . . . . . . 12 (𝑋 ∈ ℕ → 1 ≤ 𝑋)
156155adantl 482 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 1 ≤ 𝑋)
157151, 63, 64, 156leadd2dd 11770 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) + 1) ≤ ((𝑋 · 𝑈) + 𝑋))
15850recnd 11183 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → 𝑈 ∈ ℂ)
159151recnd 11183 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → 1 ∈ ℂ)
16086, 158, 159adddid 11179 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (𝑈 + 1)) = ((𝑋 · 𝑈) + (𝑋 · 1)))
16186mulid1d 11172 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → (𝑋 · 1) = 𝑋)
162161oveq2d 7373 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) + (𝑋 · 1)) = ((𝑋 · 𝑈) + 𝑋))
163160, 162eqtrd 2776 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (𝑈 + 1)) = ((𝑋 · 𝑈) + 𝑋))
164157, 163breqtrrd 5133 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((𝑋 · 𝑈) + 1) ≤ (𝑋 · (𝑈 + 1)))
16573, 149, 79, 154, 164letrd 11312 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → ((⌊‘(𝑋 · 𝑈)) + 1) ≤ (𝑋 · (𝑈 + 1)))
16660nngt0d 12202 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → 0 < 𝑀)
167 lemul2 12008 . . . . . . . . 9 ((((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℝ ∧ (𝑋 · (𝑈 + 1)) ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → (((⌊‘(𝑋 · 𝑈)) + 1) ≤ (𝑋 · (𝑈 + 1)) ↔ (𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (𝑀 · (𝑋 · (𝑈 + 1)))))
16873, 79, 61, 166, 167syl112anc 1374 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (((⌊‘(𝑋 · 𝑈)) + 1) ≤ (𝑋 · (𝑈 + 1)) ↔ (𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (𝑀 · (𝑋 · (𝑈 + 1)))))
169165, 168mpbid 231 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → (𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (𝑀 · (𝑋 · (𝑈 + 1))))
170 expgt0 14001 . . . . . . . . 9 ((𝑇 ∈ ℝ ∧ ((⌊‘(𝑋 · 𝑈)) + 1) ∈ ℤ ∧ 0 < 𝑇) → 0 < (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))
17128, 118, 37, 170syl3anc 1371 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → 0 < (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))
172 lemul1 12007 . . . . . . . 8 (((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℝ ∧ (𝑀 · (𝑋 · (𝑈 + 1))) ∈ ℝ ∧ ((𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℝ ∧ 0 < (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))) → ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (𝑀 · (𝑋 · (𝑈 + 1))) ↔ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))))
17374, 80, 75, 171, 172syl112anc 1374 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (𝑀 · (𝑋 · (𝑈 + 1))) ↔ ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)))))
174169, 173mpbid 231 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))))
17528recnd 11183 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → 𝑇 ∈ ℂ)
176175, 70expp1d 14052 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) = ((𝑇↑(⌊‘(𝑋 · 𝑈))) · 𝑇))
17735adantr 481 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 1 ≤ 𝑇)
178 remulcl 11136 . . . . . . . . . . . 12 ((𝑈 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝑈 · 𝑋) ∈ ℝ)
17949, 62, 178syl2an 596 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → (𝑈 · 𝑋) ∈ ℝ)
18086, 158mulcomd 11176 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → (𝑋 · 𝑈) = (𝑈 · 𝑋))
181153, 180breqtrd 5131 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → (⌊‘(𝑋 · 𝑈)) ≤ (𝑈 · 𝑋))
18228, 177, 150, 179, 181cxplead 26076 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐(⌊‘(𝑋 · 𝑈))) ≤ (𝑇𝑐(𝑈 · 𝑋)))
183 cxpexp 26023 . . . . . . . . . . 11 ((𝑇 ∈ ℂ ∧ (⌊‘(𝑋 · 𝑈)) ∈ ℕ0) → (𝑇𝑐(⌊‘(𝑋 · 𝑈))) = (𝑇↑(⌊‘(𝑋 · 𝑈))))
184175, 70, 183syl2anc 584 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐(⌊‘(𝑋 · 𝑈))) = (𝑇↑(⌊‘(𝑋 · 𝑈))))
18538, 50, 86cxpmuld 26091 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐(𝑈 · 𝑋)) = ((𝑇𝑐𝑈)↑𝑐𝑋))
186 cxpexp 26023 . . . . . . . . . . . 12 (((𝑇𝑐𝑈) ∈ ℂ ∧ 𝑋 ∈ ℕ0) → ((𝑇𝑐𝑈)↑𝑐𝑋) = ((𝑇𝑐𝑈)↑𝑋))
18752, 56, 186syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → ((𝑇𝑐𝑈)↑𝑐𝑋) = ((𝑇𝑐𝑈)↑𝑋))
188185, 187eqtrd 2776 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑇𝑐(𝑈 · 𝑋)) = ((𝑇𝑐𝑈)↑𝑋))
189182, 184, 1883brtr3d 5136 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → (𝑇↑(⌊‘(𝑋 · 𝑈))) ≤ ((𝑇𝑐𝑈)↑𝑋))
19028, 70reexpcld 14068 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → (𝑇↑(⌊‘(𝑋 · 𝑈))) ∈ ℝ)
191190, 81, 38lemul1d 13000 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → ((𝑇↑(⌊‘(𝑋 · 𝑈))) ≤ ((𝑇𝑐𝑈)↑𝑋) ↔ ((𝑇↑(⌊‘(𝑋 · 𝑈))) · 𝑇) ≤ (((𝑇𝑐𝑈)↑𝑋) · 𝑇)))
192189, 191mpbid 231 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → ((𝑇↑(⌊‘(𝑋 · 𝑈))) · 𝑇) ≤ (((𝑇𝑐𝑈)↑𝑋) · 𝑇))
193176, 192eqbrtrd 5127 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (((𝑇𝑐𝑈)↑𝑋) · 𝑇))
194 nngt0 12184 . . . . . . . . . . 11 (𝑋 ∈ ℕ → 0 < 𝑋)
195194adantl 482 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → 0 < 𝑋)
196 0red 11158 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 0 ∈ ℝ)
19748adantr 481 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ ℕ) → 𝑈 ∈ ℝ+)
198197rpgt0d 12960 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 0 < 𝑈)
19950ltp1d 12085 . . . . . . . . . . 11 ((𝜑𝑋 ∈ ℕ) → 𝑈 < (𝑈 + 1))
200196, 50, 78, 198, 199lttrd 11316 . . . . . . . . . 10 ((𝜑𝑋 ∈ ℕ) → 0 < (𝑈 + 1))
20163, 78, 195, 200mulgt0d 11310 . . . . . . . . 9 ((𝜑𝑋 ∈ ℕ) → 0 < (𝑋 · (𝑈 + 1)))
20261, 79, 166, 201mulgt0d 11310 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → 0 < (𝑀 · (𝑋 · (𝑈 + 1))))
203 lemul2 12008 . . . . . . . 8 (((𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ∈ ℝ ∧ (((𝑇𝑐𝑈)↑𝑋) · 𝑇) ∈ ℝ ∧ ((𝑀 · (𝑋 · (𝑈 + 1))) ∈ ℝ ∧ 0 < (𝑀 · (𝑋 · (𝑈 + 1))))) → ((𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (((𝑇𝑐𝑈)↑𝑋) · 𝑇) ↔ ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇))))
20475, 82, 80, 202, 203syl112anc 1374 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑇↑((⌊‘(𝑋 · 𝑈)) + 1)) ≤ (((𝑇𝑐𝑈)↑𝑋) · 𝑇) ↔ ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇))))
205193, 204mpbid 231 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)))
20676, 147, 83, 174, 205letrd 11312 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · ((⌊‘(𝑋 · 𝑈)) + 1)) · (𝑇↑((⌊‘(𝑋 · 𝑈)) + 1))) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)))
20759, 76, 83, 146, 206letrd 11312 . . . 4 ((𝜑𝑋 ∈ ℕ) → ((𝐹𝑁)↑𝑋) ≤ ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)))
20880recnd 11183 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝑀 · (𝑋 · (𝑈 + 1))) ∈ ℂ)
20981recnd 11183 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → ((𝑇𝑐𝑈)↑𝑋) ∈ ℂ)
210208, 209, 175mul12d 11364 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)) = (((𝑇𝑐𝑈)↑𝑋) · ((𝑀 · (𝑋 · (𝑈 + 1))) · 𝑇)))
21161recnd 11183 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → 𝑀 ∈ ℂ)
21279recnd 11183 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑋 · (𝑈 + 1)) ∈ ℂ)
213211, 212, 175mul32d 11365 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · 𝑇) = ((𝑀 · 𝑇) · (𝑋 · (𝑈 + 1))))
214211, 175mulcld 11175 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑀 · 𝑇) ∈ ℂ)
21578recnd 11183 . . . . . . . 8 ((𝜑𝑋 ∈ ℕ) → (𝑈 + 1) ∈ ℂ)
216214, 86, 215mul12d 11364 . . . . . . 7 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · 𝑇) · (𝑋 · (𝑈 + 1))) = (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))
217213, 216eqtrd 2776 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · 𝑇) = (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))
218217oveq2d 7373 . . . . 5 ((𝜑𝑋 ∈ ℕ) → (((𝑇𝑐𝑈)↑𝑋) · ((𝑀 · (𝑋 · (𝑈 + 1))) · 𝑇)) = (((𝑇𝑐𝑈)↑𝑋) · (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1)))))
219210, 218eqtrd 2776 . . . 4 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · (𝑋 · (𝑈 + 1))) · (((𝑇𝑐𝑈)↑𝑋) · 𝑇)) = (((𝑇𝑐𝑈)↑𝑋) · (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1)))))
220207, 219breqtrd 5131 . . 3 ((𝜑𝑋 ∈ ℕ) → ((𝐹𝑁)↑𝑋) ≤ (((𝑇𝑐𝑈)↑𝑋) · (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1)))))
22161, 28remulcld 11185 . . . . . 6 ((𝜑𝑋 ∈ ℕ) → (𝑀 · 𝑇) ∈ ℝ)
222221, 78remulcld 11185 . . . . 5 ((𝜑𝑋 ∈ ℕ) → ((𝑀 · 𝑇) · (𝑈 + 1)) ∈ ℝ)
22363, 222remulcld 11185 . . . 4 ((𝜑𝑋 ∈ ℕ) → (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))) ∈ ℝ)
224114adantl 482 . . . . 5 ((𝜑𝑋 ∈ ℕ) → 𝑋 ∈ ℤ)
22553, 224rpexpcld 14150 . . . 4 ((𝜑𝑋 ∈ ℕ) → ((𝑇𝑐𝑈)↑𝑋) ∈ ℝ+)
22659, 223, 225ledivmuld 13010 . . 3 ((𝜑𝑋 ∈ ℕ) → ((((𝐹𝑁)↑𝑋) / ((𝑇𝑐𝑈)↑𝑋)) ≤ (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))) ↔ ((𝐹𝑁)↑𝑋) ≤ (((𝑇𝑐𝑈)↑𝑋) · (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))))
227220, 226mpbird 256 . 2 ((𝜑𝑋 ∈ ℕ) → (((𝐹𝑁)↑𝑋) / ((𝑇𝑐𝑈)↑𝑋)) ≤ (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))
22857, 227eqbrtrd 5127 1 ((𝜑𝑋 ∈ ℕ) → (((𝐹𝑁) / (𝑇𝑐𝑈))↑𝑋) ≤ (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  ifcif 4486   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  cq 12873  +crp 12915  ...cfz 13424  cfl 13695  cexp 13967  expce 15944  cprime 16547   pCnt cpc 16708  s cress 17112  AbsValcabv 20275  fldccnfld 20796  logclog 25910  𝑐ccxp 25911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-mulg 18873  df-subg 18925  df-cntz 19097  df-cmn 19564  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-subrg 20220  df-abv 20276  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913
This theorem is referenced by:  ostth2lem4  26984
  Copyright terms: Public domain W3C validator