| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmimlbs | Structured version Visualization version GIF version | ||
| Description: The isomorphic image of a basis is a basis. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| lmimlbs.j | ⊢ 𝐽 = (LBasis‘𝑆) |
| lmimlbs.k | ⊢ 𝐾 = (LBasis‘𝑇) |
| Ref | Expression |
|---|---|
| lmimlbs | ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ 𝐵) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmimlmhm 20991 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 3 | eqid 2730 | . . . . 5 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 4 | 2, 3 | lmimf1o 20990 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) |
| 5 | f1of1 6758 | . . . 4 ⊢ (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇)) |
| 7 | lmimlbs.j | . . . . 5 ⊢ 𝐽 = (LBasis‘𝑆) | |
| 8 | 7 | lbslinds 21763 | . . . 4 ⊢ 𝐽 ⊆ (LIndS‘𝑆) |
| 9 | 8 | sseli 3928 | . . 3 ⊢ (𝐵 ∈ 𝐽 → 𝐵 ∈ (LIndS‘𝑆)) |
| 10 | 2, 3 | lindsmm2 21759 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇) ∧ 𝐵 ∈ (LIndS‘𝑆)) → (𝐹 “ 𝐵) ∈ (LIndS‘𝑇)) |
| 11 | 1, 6, 9, 10 | syl2an3an 1424 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ 𝐵) ∈ (LIndS‘𝑇)) |
| 12 | eqid 2730 | . . . . . 6 ⊢ (LSpan‘𝑆) = (LSpan‘𝑆) | |
| 13 | 2, 7, 12 | lbssp 21006 | . . . . 5 ⊢ (𝐵 ∈ 𝐽 → ((LSpan‘𝑆)‘𝐵) = (Base‘𝑆)) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → ((LSpan‘𝑆)‘𝐵) = (Base‘𝑆)) |
| 15 | 14 | imaeq2d 6006 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = (𝐹 “ (Base‘𝑆))) |
| 16 | 2, 7 | lbsss 21004 | . . . 4 ⊢ (𝐵 ∈ 𝐽 → 𝐵 ⊆ (Base‘𝑆)) |
| 17 | eqid 2730 | . . . . 5 ⊢ (LSpan‘𝑇) = (LSpan‘𝑇) | |
| 18 | 2, 12, 17 | lmhmlsp 20976 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐵 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = ((LSpan‘𝑇)‘(𝐹 “ 𝐵))) |
| 19 | 1, 16, 18 | syl2an 596 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = ((LSpan‘𝑇)‘(𝐹 “ 𝐵))) |
| 20 | 4 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) |
| 21 | f1ofo 6766 | . . . 4 ⊢ (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–onto→(Base‘𝑇)) | |
| 22 | foima 6736 | . . . 4 ⊢ (𝐹:(Base‘𝑆)–onto→(Base‘𝑇) → (𝐹 “ (Base‘𝑆)) = (Base‘𝑇)) | |
| 23 | 20, 21, 22 | 3syl 18 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ (Base‘𝑆)) = (Base‘𝑇)) |
| 24 | 15, 19, 23 | 3eqtr3d 2773 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → ((LSpan‘𝑇)‘(𝐹 “ 𝐵)) = (Base‘𝑇)) |
| 25 | lmimlbs.k | . . 3 ⊢ 𝐾 = (LBasis‘𝑇) | |
| 26 | 3, 25, 17 | islbs4 21762 | . 2 ⊢ ((𝐹 “ 𝐵) ∈ 𝐾 ↔ ((𝐹 “ 𝐵) ∈ (LIndS‘𝑇) ∧ ((LSpan‘𝑇)‘(𝐹 “ 𝐵)) = (Base‘𝑇))) |
| 27 | 11, 24, 26 | sylanbrc 583 | 1 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ 𝐵) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 “ cima 5617 –1-1→wf1 6474 –onto→wfo 6475 –1-1-onto→wf1o 6476 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 LSpanclspn 20897 LMHom clmhm 20946 LMIso clmim 20947 LBasisclbs 21001 LIndSclinds 21735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-minusg 18842 df-sbg 18843 df-subg 19028 df-ghm 19118 df-mgp 20052 df-ur 20093 df-ring 20146 df-lmod 20788 df-lss 20858 df-lsp 20898 df-lmhm 20949 df-lmim 20950 df-lbs 21002 df-lindf 21736 df-linds 21737 |
| This theorem is referenced by: lmiclbs 21767 lmimdim 33606 dimkerim 33630 |
| Copyright terms: Public domain | W3C validator |