MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimlbs Structured version   Visualization version   GIF version

Theorem lmimlbs 21801
Description: The isomorphic image of a basis is a basis. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lmimlbs.j 𝐽 = (LBasis‘𝑆)
lmimlbs.k 𝐾 = (LBasis‘𝑇)
Assertion
Ref Expression
lmimlbs ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹𝐵) ∈ 𝐾)

Proof of Theorem lmimlbs
StepHypRef Expression
1 lmimlmhm 21027 . . 3 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇))
2 eqid 2736 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2736 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
42, 3lmimf1o 21026 . . . 4 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))
5 f1of1 6822 . . . 4 (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
64, 5syl 17 . . 3 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
7 lmimlbs.j . . . . 5 𝐽 = (LBasis‘𝑆)
87lbslinds 21798 . . . 4 𝐽 ⊆ (LIndS‘𝑆)
98sseli 3959 . . 3 (𝐵𝐽𝐵 ∈ (LIndS‘𝑆))
102, 3lindsmm2 21794 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇) ∧ 𝐵 ∈ (LIndS‘𝑆)) → (𝐹𝐵) ∈ (LIndS‘𝑇))
111, 6, 9, 10syl2an3an 1424 . 2 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹𝐵) ∈ (LIndS‘𝑇))
12 eqid 2736 . . . . . 6 (LSpan‘𝑆) = (LSpan‘𝑆)
132, 7, 12lbssp 21042 . . . . 5 (𝐵𝐽 → ((LSpan‘𝑆)‘𝐵) = (Base‘𝑆))
1413adantl 481 . . . 4 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → ((LSpan‘𝑆)‘𝐵) = (Base‘𝑆))
1514imaeq2d 6052 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = (𝐹 “ (Base‘𝑆)))
162, 7lbsss 21040 . . . 4 (𝐵𝐽𝐵 ⊆ (Base‘𝑆))
17 eqid 2736 . . . . 5 (LSpan‘𝑇) = (LSpan‘𝑇)
182, 12, 17lmhmlsp 21012 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐵 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = ((LSpan‘𝑇)‘(𝐹𝐵)))
191, 16, 18syl2an 596 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = ((LSpan‘𝑇)‘(𝐹𝐵)))
204adantr 480 . . . 4 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))
21 f1ofo 6830 . . . 4 (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–onto→(Base‘𝑇))
22 foima 6800 . . . 4 (𝐹:(Base‘𝑆)–onto→(Base‘𝑇) → (𝐹 “ (Base‘𝑆)) = (Base‘𝑇))
2320, 21, 223syl 18 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹 “ (Base‘𝑆)) = (Base‘𝑇))
2415, 19, 233eqtr3d 2779 . 2 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → ((LSpan‘𝑇)‘(𝐹𝐵)) = (Base‘𝑇))
25 lmimlbs.k . . 3 𝐾 = (LBasis‘𝑇)
263, 25, 17islbs4 21797 . 2 ((𝐹𝐵) ∈ 𝐾 ↔ ((𝐹𝐵) ∈ (LIndS‘𝑇) ∧ ((LSpan‘𝑇)‘(𝐹𝐵)) = (Base‘𝑇)))
2711, 24, 26sylanbrc 583 1 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹𝐵) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3931  cima 5662  1-1wf1 6533  ontowfo 6534  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  Basecbs 17233  LSpanclspn 20933   LMHom clmhm 20982   LMIso clmim 20983  LBasisclbs 21037  LIndSclinds 21770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-ghm 19201  df-mgp 20106  df-ur 20147  df-ring 20200  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lmhm 20985  df-lmim 20986  df-lbs 21038  df-lindf 21771  df-linds 21772
This theorem is referenced by:  lmiclbs  21802  lmimdim  33648  dimkerim  33672
  Copyright terms: Public domain W3C validator