MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimlbs Structured version   Visualization version   GIF version

Theorem lmimlbs 21874
Description: The isomorphic image of a basis is a basis. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lmimlbs.j 𝐽 = (LBasis‘𝑆)
lmimlbs.k 𝐾 = (LBasis‘𝑇)
Assertion
Ref Expression
lmimlbs ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹𝐵) ∈ 𝐾)

Proof of Theorem lmimlbs
StepHypRef Expression
1 lmimlmhm 21081 . . 3 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇))
2 eqid 2735 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2735 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
42, 3lmimf1o 21080 . . . 4 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))
5 f1of1 6848 . . . 4 (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
64, 5syl 17 . . 3 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
7 lmimlbs.j . . . . 5 𝐽 = (LBasis‘𝑆)
87lbslinds 21871 . . . 4 𝐽 ⊆ (LIndS‘𝑆)
98sseli 3991 . . 3 (𝐵𝐽𝐵 ∈ (LIndS‘𝑆))
102, 3lindsmm2 21867 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇) ∧ 𝐵 ∈ (LIndS‘𝑆)) → (𝐹𝐵) ∈ (LIndS‘𝑇))
111, 6, 9, 10syl2an3an 1421 . 2 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹𝐵) ∈ (LIndS‘𝑇))
12 eqid 2735 . . . . . 6 (LSpan‘𝑆) = (LSpan‘𝑆)
132, 7, 12lbssp 21096 . . . . 5 (𝐵𝐽 → ((LSpan‘𝑆)‘𝐵) = (Base‘𝑆))
1413adantl 481 . . . 4 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → ((LSpan‘𝑆)‘𝐵) = (Base‘𝑆))
1514imaeq2d 6080 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = (𝐹 “ (Base‘𝑆)))
162, 7lbsss 21094 . . . 4 (𝐵𝐽𝐵 ⊆ (Base‘𝑆))
17 eqid 2735 . . . . 5 (LSpan‘𝑇) = (LSpan‘𝑇)
182, 12, 17lmhmlsp 21066 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐵 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = ((LSpan‘𝑇)‘(𝐹𝐵)))
191, 16, 18syl2an 596 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = ((LSpan‘𝑇)‘(𝐹𝐵)))
204adantr 480 . . . 4 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))
21 f1ofo 6856 . . . 4 (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–onto→(Base‘𝑇))
22 foima 6826 . . . 4 (𝐹:(Base‘𝑆)–onto→(Base‘𝑇) → (𝐹 “ (Base‘𝑆)) = (Base‘𝑇))
2320, 21, 223syl 18 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹 “ (Base‘𝑆)) = (Base‘𝑇))
2415, 19, 233eqtr3d 2783 . 2 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → ((LSpan‘𝑇)‘(𝐹𝐵)) = (Base‘𝑇))
25 lmimlbs.k . . 3 𝐾 = (LBasis‘𝑇)
263, 25, 17islbs4 21870 . 2 ((𝐹𝐵) ∈ 𝐾 ↔ ((𝐹𝐵) ∈ (LIndS‘𝑇) ∧ ((LSpan‘𝑇)‘(𝐹𝐵)) = (Base‘𝑇)))
2711, 24, 26sylanbrc 583 1 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹𝐵) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wss 3963  cima 5692  1-1wf1 6560  ontowfo 6561  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Basecbs 17245  LSpanclspn 20987   LMHom clmhm 21036   LMIso clmim 21037  LBasisclbs 21091  LIndSclinds 21843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-mgp 20153  df-ur 20200  df-ring 20253  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lmhm 21039  df-lmim 21040  df-lbs 21092  df-lindf 21844  df-linds 21845
This theorem is referenced by:  lmiclbs  21875  lmimdim  33631  dimkerim  33655
  Copyright terms: Public domain W3C validator