MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimlbs Structured version   Visualization version   GIF version

Theorem lmimlbs 20974
Description: The isomorphic image of a basis is a basis. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lmimlbs.j 𝐽 = (LBasis‘𝑆)
lmimlbs.k 𝐾 = (LBasis‘𝑇)
Assertion
Ref Expression
lmimlbs ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹𝐵) ∈ 𝐾)

Proof of Theorem lmimlbs
StepHypRef Expression
1 lmimlmhm 19830 . . 3 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇))
2 eqid 2821 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2821 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
42, 3lmimf1o 19829 . . . 4 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))
5 f1of1 6608 . . . 4 (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
64, 5syl 17 . . 3 (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇))
7 lmimlbs.j . . . . 5 𝐽 = (LBasis‘𝑆)
87lbslinds 20971 . . . 4 𝐽 ⊆ (LIndS‘𝑆)
98sseli 3962 . . 3 (𝐵𝐽𝐵 ∈ (LIndS‘𝑆))
102, 3lindsmm2 20967 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇) ∧ 𝐵 ∈ (LIndS‘𝑆)) → (𝐹𝐵) ∈ (LIndS‘𝑇))
111, 6, 9, 10syl2an3an 1418 . 2 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹𝐵) ∈ (LIndS‘𝑇))
12 eqid 2821 . . . . . 6 (LSpan‘𝑆) = (LSpan‘𝑆)
132, 7, 12lbssp 19845 . . . . 5 (𝐵𝐽 → ((LSpan‘𝑆)‘𝐵) = (Base‘𝑆))
1413adantl 484 . . . 4 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → ((LSpan‘𝑆)‘𝐵) = (Base‘𝑆))
1514imaeq2d 5923 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = (𝐹 “ (Base‘𝑆)))
162, 7lbsss 19843 . . . 4 (𝐵𝐽𝐵 ⊆ (Base‘𝑆))
17 eqid 2821 . . . . 5 (LSpan‘𝑇) = (LSpan‘𝑇)
182, 12, 17lmhmlsp 19815 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐵 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = ((LSpan‘𝑇)‘(𝐹𝐵)))
191, 16, 18syl2an 597 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = ((LSpan‘𝑇)‘(𝐹𝐵)))
204adantr 483 . . . 4 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))
21 f1ofo 6616 . . . 4 (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–onto→(Base‘𝑇))
22 foima 6589 . . . 4 (𝐹:(Base‘𝑆)–onto→(Base‘𝑇) → (𝐹 “ (Base‘𝑆)) = (Base‘𝑇))
2320, 21, 223syl 18 . . 3 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹 “ (Base‘𝑆)) = (Base‘𝑇))
2415, 19, 233eqtr3d 2864 . 2 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → ((LSpan‘𝑇)‘(𝐹𝐵)) = (Base‘𝑇))
25 lmimlbs.k . . 3 𝐾 = (LBasis‘𝑇)
263, 25, 17islbs4 20970 . 2 ((𝐹𝐵) ∈ 𝐾 ↔ ((𝐹𝐵) ∈ (LIndS‘𝑇) ∧ ((LSpan‘𝑇)‘(𝐹𝐵)) = (Base‘𝑇)))
2711, 24, 26sylanbrc 585 1 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵𝐽) → (𝐹𝐵) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wss 3935  cima 5552  1-1wf1 6346  ontowfo 6347  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  Basecbs 16477  LSpanclspn 19737   LMHom clmhm 19785   LMIso clmim 19786  LBasisclbs 19840  LIndSclinds 20943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-ghm 18350  df-mgp 19234  df-ur 19246  df-ring 19293  df-lmod 19630  df-lss 19698  df-lsp 19738  df-lmhm 19788  df-lmim 19789  df-lbs 19841  df-lindf 20944  df-linds 20945
This theorem is referenced by:  lmiclbs  20975  dimkerim  31018
  Copyright terms: Public domain W3C validator