| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmimlbs | Structured version Visualization version GIF version | ||
| Description: The isomorphic image of a basis is a basis. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| lmimlbs.j | ⊢ 𝐽 = (LBasis‘𝑆) |
| lmimlbs.k | ⊢ 𝐾 = (LBasis‘𝑇) |
| Ref | Expression |
|---|---|
| lmimlbs | ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ 𝐵) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmimlmhm 21008 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
| 2 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 3 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 4 | 2, 3 | lmimf1o 21007 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) |
| 5 | f1of1 6770 | . . . 4 ⊢ (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) → 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇)) |
| 7 | lmimlbs.j | . . . . 5 ⊢ 𝐽 = (LBasis‘𝑆) | |
| 8 | 7 | lbslinds 21780 | . . . 4 ⊢ 𝐽 ⊆ (LIndS‘𝑆) |
| 9 | 8 | sseli 3927 | . . 3 ⊢ (𝐵 ∈ 𝐽 → 𝐵 ∈ (LIndS‘𝑆)) |
| 10 | 2, 3 | lindsmm2 21776 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1→(Base‘𝑇) ∧ 𝐵 ∈ (LIndS‘𝑆)) → (𝐹 “ 𝐵) ∈ (LIndS‘𝑇)) |
| 11 | 1, 6, 9, 10 | syl2an3an 1424 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ 𝐵) ∈ (LIndS‘𝑇)) |
| 12 | eqid 2733 | . . . . . 6 ⊢ (LSpan‘𝑆) = (LSpan‘𝑆) | |
| 13 | 2, 7, 12 | lbssp 21023 | . . . . 5 ⊢ (𝐵 ∈ 𝐽 → ((LSpan‘𝑆)‘𝐵) = (Base‘𝑆)) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → ((LSpan‘𝑆)‘𝐵) = (Base‘𝑆)) |
| 15 | 14 | imaeq2d 6016 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = (𝐹 “ (Base‘𝑆))) |
| 16 | 2, 7 | lbsss 21021 | . . . 4 ⊢ (𝐵 ∈ 𝐽 → 𝐵 ⊆ (Base‘𝑆)) |
| 17 | eqid 2733 | . . . . 5 ⊢ (LSpan‘𝑇) = (LSpan‘𝑇) | |
| 18 | 2, 12, 17 | lmhmlsp 20993 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐵 ⊆ (Base‘𝑆)) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = ((LSpan‘𝑇)‘(𝐹 “ 𝐵))) |
| 19 | 1, 16, 18 | syl2an 596 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ ((LSpan‘𝑆)‘𝐵)) = ((LSpan‘𝑇)‘(𝐹 “ 𝐵))) |
| 20 | 4 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) |
| 21 | f1ofo 6778 | . . . 4 ⊢ (𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝐹:(Base‘𝑆)–onto→(Base‘𝑇)) | |
| 22 | foima 6748 | . . . 4 ⊢ (𝐹:(Base‘𝑆)–onto→(Base‘𝑇) → (𝐹 “ (Base‘𝑆)) = (Base‘𝑇)) | |
| 23 | 20, 21, 22 | 3syl 18 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ (Base‘𝑆)) = (Base‘𝑇)) |
| 24 | 15, 19, 23 | 3eqtr3d 2776 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → ((LSpan‘𝑇)‘(𝐹 “ 𝐵)) = (Base‘𝑇)) |
| 25 | lmimlbs.k | . . 3 ⊢ 𝐾 = (LBasis‘𝑇) | |
| 26 | 3, 25, 17 | islbs4 21779 | . 2 ⊢ ((𝐹 “ 𝐵) ∈ 𝐾 ↔ ((𝐹 “ 𝐵) ∈ (LIndS‘𝑇) ∧ ((LSpan‘𝑇)‘(𝐹 “ 𝐵)) = (Base‘𝑇))) |
| 27 | 11, 24, 26 | sylanbrc 583 | 1 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ 𝐵) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3899 “ cima 5624 –1-1→wf1 6486 –onto→wfo 6487 –1-1-onto→wf1o 6488 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 LSpanclspn 20914 LMHom clmhm 20963 LMIso clmim 20964 LBasisclbs 21018 LIndSclinds 21752 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19046 df-ghm 19135 df-mgp 20069 df-ur 20110 df-ring 20163 df-lmod 20805 df-lss 20875 df-lsp 20915 df-lmhm 20966 df-lmim 20967 df-lbs 21019 df-lindf 21753 df-linds 21754 |
| This theorem is referenced by: lmiclbs 21784 lmimdim 33627 dimkerim 33651 |
| Copyright terms: Public domain | W3C validator |