MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncongr1 Structured version   Visualization version   GIF version

Theorem cncongr1 16543
Description: One direction of the bicondition in cncongr 16545. Theorem 5.4 in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.)
Assertion
Ref Expression
cncongr1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))

Proof of Theorem cncongr1
Dummy variables 𝑘 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zmulcl 12552 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℤ)
213adant2 1131 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℤ)
3 zmulcl 12552 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
433adant1 1130 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
5 simpl 483 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → 𝑁 ∈ ℕ)
6 congr 16540 . . 3 (((𝐴 · 𝐶) ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
72, 4, 5, 6syl2an3an 1422 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
8 simpl 483 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐶 ∈ ℤ)
9 nnz 12520 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
10 nnne0 12187 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
119, 10jca 512 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
1211adantl 482 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
13 eqidd 2737 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁))
148, 12, 133jca 1128 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁)))
1514ex 413 . . . . . . . . . 10 (𝐶 ∈ ℤ → (𝑁 ∈ ℕ → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁))))
16153ad2ant3 1135 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝑁 ∈ ℕ → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁))))
1716com12 32 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁))))
1817adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁))))
1918impcom 408 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁)))
20 divgcdcoprmex 16542 . . . . . 6 ((𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁)) → ∃𝑟 ∈ ℤ ∃𝑠 ∈ ℤ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1))
2119, 20syl 17 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ∃𝑟 ∈ ℤ ∃𝑠 ∈ ℤ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1))
2221adantr 481 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → ∃𝑟 ∈ ℤ ∃𝑠 ∈ ℤ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1))
23 oveq2 7365 . . . . . . . . . 10 (𝑁 = ((𝐶 gcd 𝑁) · 𝑠) → (𝑘 · 𝑁) = (𝑘 · ((𝐶 gcd 𝑁) · 𝑠)))
24233ad2ant2 1134 . . . . . . . . 9 ((𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → (𝑘 · 𝑁) = (𝑘 · ((𝐶 gcd 𝑁) · 𝑠)))
2524adantl 482 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → (𝑘 · 𝑁) = (𝑘 · ((𝐶 gcd 𝑁) · 𝑠)))
26 oveq2 7365 . . . . . . . . . . 11 (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) → (𝐴 · 𝐶) = (𝐴 · ((𝐶 gcd 𝑁) · 𝑟)))
27 oveq2 7365 . . . . . . . . . . 11 (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) → (𝐵 · 𝐶) = (𝐵 · ((𝐶 gcd 𝑁) · 𝑟)))
2826, 27oveq12d 7375 . . . . . . . . . 10 (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) → ((𝐴 · 𝐶) − (𝐵 · 𝐶)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))))
29283ad2ant1 1133 . . . . . . . . 9 ((𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝐴 · 𝐶) − (𝐵 · 𝐶)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))))
3029adantl 482 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝐴 · 𝐶) − (𝐵 · 𝐶)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))))
3125, 30eqeq12d 2752 . . . . . . 7 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) ↔ (𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟)))))
32 simpr 485 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
3332zcnd 12608 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
3433adantr 481 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑘 ∈ ℂ)
35 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
3635adantr 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝐶 ∈ ℤ)
379adantr 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → 𝑁 ∈ ℤ)
3837adantl 482 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ∈ ℤ)
3936, 38gcdcld 16388 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ∈ ℕ0)
4039nn0cnd 12475 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ∈ ℂ)
4140ad2antrr 724 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℂ)
42 simpr 485 . . . . . . . . . . . . . 14 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → 𝑠 ∈ ℤ)
4342zcnd 12608 . . . . . . . . . . . . 13 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → 𝑠 ∈ ℂ)
4443adantl 482 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑠 ∈ ℂ)
4534, 41, 44mul12d 11364 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐶 gcd 𝑁) · (𝑘 · 𝑠)))
46 simp1 1136 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
4746zcnd 12608 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℂ)
4847adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝐴 ∈ ℂ)
4948ad2antrr 724 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝐴 ∈ ℂ)
5035ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → 𝐶 ∈ ℤ)
515nnzd 12526 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → 𝑁 ∈ ℤ)
5251adantl 482 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ∈ ℤ)
5352adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
5450, 53gcdcld 16388 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → (𝐶 gcd 𝑁) ∈ ℕ0)
5554nn0cnd 12475 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → (𝐶 gcd 𝑁) ∈ ℂ)
5655adantr 481 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℂ)
57 simpl 483 . . . . . . . . . . . . . . 15 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → 𝑟 ∈ ℤ)
5857zcnd 12608 . . . . . . . . . . . . . 14 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → 𝑟 ∈ ℂ)
5958adantl 482 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑟 ∈ ℂ)
6049, 56, 59mul12d 11364 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) = ((𝐶 gcd 𝑁) · (𝐴 · 𝑟)))
61 simp2 1137 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℤ)
6261zcnd 12608 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℂ)
6362adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝐵 ∈ ℂ)
6463ad2antrr 724 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝐵 ∈ ℂ)
6536, 52gcdcld 16388 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ∈ ℕ0)
6665nn0cnd 12475 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ∈ ℂ)
6766ad2antrr 724 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℂ)
6864, 67, 59mul12d 11364 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐵 · ((𝐶 gcd 𝑁) · 𝑟)) = ((𝐶 gcd 𝑁) · (𝐵 · 𝑟)))
6960, 68oveq12d 7375 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))) = (((𝐶 gcd 𝑁) · (𝐴 · 𝑟)) − ((𝐶 gcd 𝑁) · (𝐵 · 𝑟))))
7045, 69eqeq12d 2752 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))) ↔ ((𝐶 gcd 𝑁) · (𝑘 · 𝑠)) = (((𝐶 gcd 𝑁) · (𝐴 · 𝑟)) − ((𝐶 gcd 𝑁) · (𝐵 · 𝑟)))))
7146adantr 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝐴 ∈ ℤ)
7271ad2antrr 724 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝐴 ∈ ℤ)
7357adantl 482 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑟 ∈ ℤ)
7472, 73zmulcld 12613 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐴 · 𝑟) ∈ ℤ)
7574zcnd 12608 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐴 · 𝑟) ∈ ℂ)
7661adantr 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝐵 ∈ ℤ)
7776ad2antrr 724 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝐵 ∈ ℤ)
7877, 73zmulcld 12613 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐵 · 𝑟) ∈ ℤ)
7978zcnd 12608 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐵 · 𝑟) ∈ ℂ)
8067, 75, 79subdid 11611 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐶 gcd 𝑁) · ((𝐴 · 𝑟) − (𝐵 · 𝑟))) = (((𝐶 gcd 𝑁) · (𝐴 · 𝑟)) − ((𝐶 gcd 𝑁) · (𝐵 · 𝑟))))
8180eqcomd 2742 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (((𝐶 gcd 𝑁) · (𝐴 · 𝑟)) − ((𝐶 gcd 𝑁) · (𝐵 · 𝑟))) = ((𝐶 gcd 𝑁) · ((𝐴 · 𝑟) − (𝐵 · 𝑟))))
8281eqeq2d 2747 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (((𝐶 gcd 𝑁) · (𝑘 · 𝑠)) = (((𝐶 gcd 𝑁) · (𝐴 · 𝑟)) − ((𝐶 gcd 𝑁) · (𝐵 · 𝑟))) ↔ ((𝐶 gcd 𝑁) · (𝑘 · 𝑠)) = ((𝐶 gcd 𝑁) · ((𝐴 · 𝑟) − (𝐵 · 𝑟)))))
8332adantr 481 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑘 ∈ ℤ)
8442adantl 482 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑠 ∈ ℤ)
8583, 84zmulcld 12613 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝑘 · 𝑠) ∈ ℤ)
8685zcnd 12608 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝑘 · 𝑠) ∈ ℂ)
87 simpl 483 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
8887, 57anim12i 613 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝑟 ∈ ℤ))
89 zmulcl 12552 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐴 · 𝑟) ∈ ℤ)
9088, 89syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐴 · 𝑟) ∈ ℤ)
91 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
9291, 57anim12i 613 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐵 ∈ ℤ ∧ 𝑟 ∈ ℤ))
93 zmulcl 12552 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐵 · 𝑟) ∈ ℤ)
9492, 93syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐵 · 𝑟) ∈ ℤ)
9590, 94zsubcld 12612 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℤ)
9695zcnd 12608 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℂ)
9796ex 413 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℂ))
98973adant3 1132 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℂ))
9998ad2antrr 724 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℂ))
10099imp 407 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℂ)
10110adantr 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → 𝑁 ≠ 0)
102101adantl 482 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ≠ 0)
103 gcd2n0cl 16389 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐶 gcd 𝑁) ∈ ℕ)
10436, 52, 102, 103syl3anc 1371 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ∈ ℕ)
105 nnne0 12187 . . . . . . . . . . . . 13 ((𝐶 gcd 𝑁) ∈ ℕ → (𝐶 gcd 𝑁) ≠ 0)
106104, 105syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ≠ 0)
107106ad2antrr 724 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) ≠ 0)
10886, 100, 67, 107mulcand 11788 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (((𝐶 gcd 𝑁) · (𝑘 · 𝑠)) = ((𝐶 gcd 𝑁) · ((𝐴 · 𝑟) − (𝐵 · 𝑟))) ↔ (𝑘 · 𝑠) = ((𝐴 · 𝑟) − (𝐵 · 𝑟))))
10970, 82, 1083bitrd 304 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))) ↔ (𝑘 · 𝑠) = ((𝐴 · 𝑟) − (𝐵 · 𝑟))))
110109adantr 481 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))) ↔ (𝑘 · 𝑠) = ((𝐴 · 𝑟) − (𝐵 · 𝑟))))
111 zcn 12504 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
112 zcn 12504 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
113111, 112anim12i 613 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
1141133adant3 1132 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
115114ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
116115, 58anim12i 613 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑟 ∈ ℂ))
117 df-3an 1089 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑟 ∈ ℂ))
118116, 117sylibr 233 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ))
119 subdir 11589 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ) → ((𝐴𝐵) · 𝑟) = ((𝐴 · 𝑟) − (𝐵 · 𝑟)))
120118, 119syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴𝐵) · 𝑟) = ((𝐴 · 𝑟) − (𝐵 · 𝑟)))
121120eqcomd 2742 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) = ((𝐴𝐵) · 𝑟))
122121adantr 481 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) = ((𝐴𝐵) · 𝑟))
123122eqeq2d 2747 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · 𝑠) = ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ↔ (𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟)))
1245nncnd 12169 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → 𝑁 ∈ ℂ)
125124adantl 482 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ∈ ℂ)
126125ad2antrr 724 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑁 ∈ ℂ)
12784zcnd 12608 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑠 ∈ ℂ)
12866, 106jca 512 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐶 gcd 𝑁) ∈ ℂ ∧ (𝐶 gcd 𝑁) ≠ 0))
129128ad2antrr 724 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐶 gcd 𝑁) ∈ ℂ ∧ (𝐶 gcd 𝑁) ≠ 0))
130 divmul2 11817 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ ((𝐶 gcd 𝑁) ∈ ℂ ∧ (𝐶 gcd 𝑁) ≠ 0)) → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠𝑁 = ((𝐶 gcd 𝑁) · 𝑠)))
131126, 127, 129, 130syl3anc 1371 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠𝑁 = ((𝐶 gcd 𝑁) · 𝑠)))
132 simpll 765 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ))
13373adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → 𝑟 ∈ ℤ)
1345adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ∈ ℕ)
135134, 36jca 512 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑁 ∈ ℕ ∧ 𝐶 ∈ ℤ))
136 divgcdnnr 16396 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝐶 ∈ ℤ) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
137135, 136syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
138137adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
139138ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
140 eleq1 2825 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑁 / (𝐶 gcd 𝑁)) → (𝑠 ∈ ℕ ↔ (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ))
141140eqcoms 2744 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → (𝑠 ∈ ℕ ↔ (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ))
142141adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → (𝑠 ∈ ℕ ↔ (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ))
143139, 142mpbird 256 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → 𝑠 ∈ ℕ)
144133, 143jca 512 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))
145132, 144jca 512 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)))
146 simpr 485 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → (𝑁 / (𝐶 gcd 𝑁)) = 𝑠)
147145, 146jca 512 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠))
148 nnz 12520 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 ∈ ℕ → 𝑠 ∈ ℤ)
149148adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 𝑠 ∈ ℤ)
150149anim2i 617 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → (𝑘 ∈ ℤ ∧ 𝑠 ∈ ℤ))
151150adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑘 ∈ ℤ ∧ 𝑠 ∈ ℤ))
152 dvdsmul2 16161 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 ∈ ℤ ∧ 𝑠 ∈ ℤ) → 𝑠 ∥ (𝑘 · 𝑠))
153151, 152syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → 𝑠 ∥ (𝑘 · 𝑠))
154 breq2 5109 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝑠 ∥ (𝑘 · 𝑠) ↔ 𝑠 ∥ ((𝐴𝐵) · 𝑟)))
155 zsubcl 12545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
156155zcnd 12608 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
157156adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝐴𝐵) ∈ ℂ)
158 zcn 12504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑟 ∈ ℤ → 𝑟 ∈ ℂ)
159158adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 𝑟 ∈ ℂ)
160159adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → 𝑟 ∈ ℂ)
161160adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → 𝑟 ∈ ℂ)
162157, 161mulcomd 11176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝐴𝐵) · 𝑟) = (𝑟 · (𝐴𝐵)))
163162breq2d 5117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∥ ((𝐴𝐵) · 𝑟) ↔ 𝑠 ∥ (𝑟 · (𝐴𝐵))))
164148anim2i 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ))
165 gcdcom 16393 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑟 gcd 𝑠) = (𝑠 gcd 𝑟))
166164, 165syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝑟 gcd 𝑠) = (𝑠 gcd 𝑟))
167166eqeq1d 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑟 gcd 𝑠) = 1 ↔ (𝑠 gcd 𝑟) = 1))
168167adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → ((𝑟 gcd 𝑠) = 1 ↔ (𝑠 gcd 𝑟) = 1))
169168adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑟 gcd 𝑠) = 1 ↔ (𝑠 gcd 𝑟) = 1))
170164adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ))
171170ancomd 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → (𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ))
172155, 171anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝐴𝐵) ∈ ℤ ∧ (𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ)))
173172ancomd 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ) ∧ (𝐴𝐵) ∈ ℤ))
174 df-3an 1089 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) ↔ ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ) ∧ (𝐴𝐵) ∈ ℤ))
175173, 174sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
176 coprmdvds 16529 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → ((𝑠 ∥ (𝑟 · (𝐴𝐵)) ∧ (𝑠 gcd 𝑟) = 1) → 𝑠 ∥ (𝐴𝐵)))
177175, 176syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑠 ∥ (𝑟 · (𝐴𝐵)) ∧ (𝑠 gcd 𝑟) = 1) → 𝑠 ∥ (𝐴𝐵)))
178 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 𝑠 ∈ ℕ)
179178adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → 𝑠 ∈ ℕ)
180179anim2i 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑠 ∈ ℕ))
181180ancomd 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
182 3anass 1095 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑠 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (𝑠 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
183181, 182sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
184 moddvds 16147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑠 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑠) = (𝐵 mod 𝑠) ↔ 𝑠 ∥ (𝐴𝐵)))
185183, 184syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝐴 mod 𝑠) = (𝐵 mod 𝑠) ↔ 𝑠 ∥ (𝐴𝐵)))
186177, 185sylibrd 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑠 ∥ (𝑟 · (𝐴𝐵)) ∧ (𝑠 gcd 𝑟) = 1) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
187186expcomd 417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑠 gcd 𝑟) = 1 → (𝑠 ∥ (𝑟 · (𝐴𝐵)) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
188169, 187sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑟 gcd 𝑠) = 1 → (𝑠 ∥ (𝑟 · (𝐴𝐵)) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
189188com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∥ (𝑟 · (𝐴𝐵)) → ((𝑟 gcd 𝑠) = 1 → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
190163, 189sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∥ ((𝐴𝐵) · 𝑟) → ((𝑟 gcd 𝑠) = 1 → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
191190com3l 89 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∥ ((𝐴𝐵) · 𝑟) → ((𝑟 gcd 𝑠) = 1 → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
192154, 191syl6bi 252 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝑠 ∥ (𝑘 · 𝑠) → ((𝑟 gcd 𝑠) = 1 → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))))
193192com14 96 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∥ (𝑘 · 𝑠) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))))
194153, 193mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
195194ex 413 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))))
1961953adant3 1132 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))))
197196adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))))
198197impl 456 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
199198adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
200199imp 407 . . . . . . . . . . . . . . . . . 18 (((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
201 eqtr2 2760 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 / (𝐶 gcd 𝑁)) = 𝑀 ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → 𝑀 = 𝑠)
202 oveq2 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 = 𝑠 → (𝐴 mod 𝑀) = (𝐴 mod 𝑠))
203 oveq2 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 = 𝑠 → (𝐵 mod 𝑀) = (𝐵 mod 𝑠))
204202, 203eqeq12d 2752 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑀 = 𝑠 → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
205201, 204syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 / (𝐶 gcd 𝑁)) = 𝑀 ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
206205ex 413 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 / (𝐶 gcd 𝑁)) = 𝑀 → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
207206eqcoms 2744 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
208207adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
209208adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
210209ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
211210imp 407 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
212211adantr 481 . . . . . . . . . . . . . . . . . 18 (((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
213200, 212sylibrd 258 . . . . . . . . . . . . . . . . 17 (((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
214213ex 413 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))
215147, 214syl 17 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))
216215ex 413 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))))
217131, 216sylbird 259 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝑁 = ((𝐶 gcd 𝑁) · 𝑠) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))))
218217com3l 89 . . . . . . . . . . . 12 (𝑁 = ((𝐶 gcd 𝑁) · 𝑠) → ((𝑟 gcd 𝑠) = 1 → (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))))
219218a1i 11 . . . . . . . . . . 11 (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) → (𝑁 = ((𝐶 gcd 𝑁) · 𝑠) → ((𝑟 gcd 𝑠) = 1 → (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))))
2202193imp 1111 . . . . . . . . . 10 ((𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))
221220impcom 408 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
222123, 221sylbid 239 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · 𝑠) = ((𝐴 · 𝑟) − (𝐵 · 𝑟)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
223110, 222sylbid 239 . . . . . . 7 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
22431, 223sylbid 239 . . . . . 6 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
225224ex 413 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))
226225rexlimdvva 3205 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → (∃𝑟 ∈ ℤ ∃𝑠 ∈ ℤ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))
22722, 226mpd 15 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
228227rexlimdva 3152 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (∃𝑘 ∈ ℤ (𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
2297, 228sylbid 239 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073   class class class wbr 5105  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   · cmul 11056  cmin 11385   / cdiv 11812  cn 12153  cz 12499   mod cmo 13774  cdvds 16136   gcd cgcd 16374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375
This theorem is referenced by:  cncongr  16545
  Copyright terms: Public domain W3C validator