| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txbasex | Structured version Visualization version GIF version | ||
| Description: The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| txval.1 | ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) |
| Ref | Expression |
|---|---|
| txbasex | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txval.1 | . . . 4 ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) | |
| 2 | eqid 2729 | . . . 4 ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 3 | eqid 2729 | . . . 4 ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 4 | 1, 2, 3 | txuni2 23452 | . . 3 ⊢ (∪ 𝑅 × ∪ 𝑆) = ∪ 𝐵 |
| 5 | uniexg 7716 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ∪ 𝑅 ∈ V) | |
| 6 | uniexg 7716 | . . . 4 ⊢ (𝑆 ∈ 𝑊 → ∪ 𝑆 ∈ V) | |
| 7 | xpexg 7726 | . . . 4 ⊢ ((∪ 𝑅 ∈ V ∧ ∪ 𝑆 ∈ V) → (∪ 𝑅 × ∪ 𝑆) ∈ V) | |
| 8 | 5, 6, 7 | syl2an 596 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (∪ 𝑅 × ∪ 𝑆) ∈ V) |
| 9 | 4, 8 | eqeltrrid 2833 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ∪ 𝐵 ∈ V) |
| 10 | uniexb 7740 | . 2 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
| 11 | 9, 10 | sylibr 234 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cuni 4871 × cxp 5636 ran crn 5639 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 |
| This theorem is referenced by: txbas 23454 eltx 23455 txtopon 23478 txopn 23489 txss12 23492 txbasval 23493 txrest 23518 sxsiga 34181 elsx 34184 mbfmco2 34256 |
| Copyright terms: Public domain | W3C validator |