MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txbasex Structured version   Visualization version   GIF version

Theorem txbasex 23290
Description: The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypothesis
Ref Expression
txval.1 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
txbasex ((𝑅𝑉𝑆𝑊) → 𝐵 ∈ V)
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem txbasex
StepHypRef Expression
1 txval.1 . . . 4 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
2 eqid 2732 . . . 4 𝑅 = 𝑅
3 eqid 2732 . . . 4 𝑆 = 𝑆
41, 2, 3txuni2 23289 . . 3 ( 𝑅 × 𝑆) = 𝐵
5 uniexg 7732 . . . 4 (𝑅𝑉 𝑅 ∈ V)
6 uniexg 7732 . . . 4 (𝑆𝑊 𝑆 ∈ V)
7 xpexg 7739 . . . 4 (( 𝑅 ∈ V ∧ 𝑆 ∈ V) → ( 𝑅 × 𝑆) ∈ V)
85, 6, 7syl2an 596 . . 3 ((𝑅𝑉𝑆𝑊) → ( 𝑅 × 𝑆) ∈ V)
94, 8eqeltrrid 2838 . 2 ((𝑅𝑉𝑆𝑊) → 𝐵 ∈ V)
10 uniexb 7753 . 2 (𝐵 ∈ V ↔ 𝐵 ∈ V)
119, 10sylibr 233 1 ((𝑅𝑉𝑆𝑊) → 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474   cuni 4908   × cxp 5674  ran crn 5677  cmpo 7413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978
This theorem is referenced by:  txbas  23291  eltx  23292  txtopon  23315  txopn  23326  txss12  23329  txbasval  23330  txrest  23355  sxsiga  33475  elsx  33478  mbfmco2  33550
  Copyright terms: Public domain W3C validator