| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txbasex | Structured version Visualization version GIF version | ||
| Description: The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| txval.1 | ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) |
| Ref | Expression |
|---|---|
| txbasex | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txval.1 | . . . 4 ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) | |
| 2 | eqid 2736 | . . . 4 ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 3 | eqid 2736 | . . . 4 ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 4 | 1, 2, 3 | txuni2 23574 | . . 3 ⊢ (∪ 𝑅 × ∪ 𝑆) = ∪ 𝐵 |
| 5 | uniexg 7761 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ∪ 𝑅 ∈ V) | |
| 6 | uniexg 7761 | . . . 4 ⊢ (𝑆 ∈ 𝑊 → ∪ 𝑆 ∈ V) | |
| 7 | xpexg 7771 | . . . 4 ⊢ ((∪ 𝑅 ∈ V ∧ ∪ 𝑆 ∈ V) → (∪ 𝑅 × ∪ 𝑆) ∈ V) | |
| 8 | 5, 6, 7 | syl2an 596 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (∪ 𝑅 × ∪ 𝑆) ∈ V) |
| 9 | 4, 8 | eqeltrrid 2845 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ∪ 𝐵 ∈ V) |
| 10 | uniexb 7785 | . 2 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
| 11 | 9, 10 | sylibr 234 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ∪ cuni 4906 × cxp 5682 ran crn 5685 ∈ cmpo 7434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 |
| This theorem is referenced by: txbas 23576 eltx 23577 txtopon 23600 txopn 23611 txss12 23614 txbasval 23615 txrest 23640 sxsiga 34193 elsx 34196 mbfmco2 34268 |
| Copyright terms: Public domain | W3C validator |