![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > txbasex | Structured version Visualization version GIF version |
Description: The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
txval.1 | ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) |
Ref | Expression |
---|---|
txbasex | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txval.1 | . . . 4 ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) | |
2 | eqid 2732 | . . . 4 ⊢ ∪ 𝑅 = ∪ 𝑅 | |
3 | eqid 2732 | . . . 4 ⊢ ∪ 𝑆 = ∪ 𝑆 | |
4 | 1, 2, 3 | txuni2 23289 | . . 3 ⊢ (∪ 𝑅 × ∪ 𝑆) = ∪ 𝐵 |
5 | uniexg 7732 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ∪ 𝑅 ∈ V) | |
6 | uniexg 7732 | . . . 4 ⊢ (𝑆 ∈ 𝑊 → ∪ 𝑆 ∈ V) | |
7 | xpexg 7739 | . . . 4 ⊢ ((∪ 𝑅 ∈ V ∧ ∪ 𝑆 ∈ V) → (∪ 𝑅 × ∪ 𝑆) ∈ V) | |
8 | 5, 6, 7 | syl2an 596 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (∪ 𝑅 × ∪ 𝑆) ∈ V) |
9 | 4, 8 | eqeltrrid 2838 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ∪ 𝐵 ∈ V) |
10 | uniexb 7753 | . 2 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
11 | 9, 10 | sylibr 233 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∪ cuni 4908 × cxp 5674 ran crn 5677 ∈ cmpo 7413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 |
This theorem is referenced by: txbas 23291 eltx 23292 txtopon 23315 txopn 23326 txss12 23329 txbasval 23330 txrest 23355 sxsiga 33475 elsx 33478 mbfmco2 33550 |
Copyright terms: Public domain | W3C validator |