MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtopn1 Structured version   Visualization version   GIF version

Theorem ordtopn1 22545
Description: An upward ray (𝑃, +∞) is open. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordtopn1 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ (ordTop‘𝑅))
Distinct variable groups:   𝑥,𝑃   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋

Proof of Theorem ordtopn1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ordttopon.3 . . . . . . . . 9 𝑋 = dom 𝑅
2 eqid 2736 . . . . . . . . 9 ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦})
3 eqid 2736 . . . . . . . . 9 ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})
41, 2, 3ordtuni 22541 . . . . . . . 8 (𝑅𝑉𝑋 = ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))
54adantr 481 . . . . . . 7 ((𝑅𝑉𝑃𝑋) → 𝑋 = ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))
6 dmexg 7840 . . . . . . . . 9 (𝑅𝑉 → dom 𝑅 ∈ V)
71, 6eqeltrid 2842 . . . . . . . 8 (𝑅𝑉𝑋 ∈ V)
87adantr 481 . . . . . . 7 ((𝑅𝑉𝑃𝑋) → 𝑋 ∈ V)
95, 8eqeltrrd 2839 . . . . . 6 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V)
10 uniexb 7698 . . . . . 6 (({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V ↔ ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V)
119, 10sylibr 233 . . . . 5 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V)
12 ssfii 9355 . . . . 5 (({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))))
1311, 12syl 17 . . . 4 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))))
14 fibas 22327 . . . . 5 (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ∈ TopBases
15 bastg 22316 . . . . 5 ((fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ∈ TopBases → (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))))
1614, 15ax-mp 5 . . . 4 (fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))))
1713, 16sstrdi 3956 . . 3 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))))
181, 2, 3ordtval 22540 . . . 4 (𝑅𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))))
1918adantr 481 . . 3 ((𝑅𝑉𝑃𝑋) → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))))
2017, 19sseqtrrd 3985 . 2 ((𝑅𝑉𝑃𝑋) → ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (ordTop‘𝑅))
21 ssun2 4133 . . 3 (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})) ⊆ ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))
22 ssun1 4132 . . . 4 ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ⊆ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))
23 simpr 485 . . . . . 6 ((𝑅𝑉𝑃𝑋) → 𝑃𝑋)
24 eqidd 2737 . . . . . 6 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃})
25 breq2 5109 . . . . . . . . 9 (𝑦 = 𝑃 → (𝑥𝑅𝑦𝑥𝑅𝑃))
2625notbid 317 . . . . . . . 8 (𝑦 = 𝑃 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝑃))
2726rabbidv 3415 . . . . . . 7 (𝑦 = 𝑃 → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦} = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃})
2827rspceeqv 3595 . . . . . 6 ((𝑃𝑋 ∧ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃}) → ∃𝑦𝑋 {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦})
2923, 24, 28syl2anc 584 . . . . 5 ((𝑅𝑉𝑃𝑋) → ∃𝑦𝑋 {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦})
30 rabexg 5288 . . . . . 6 (𝑋 ∈ V → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ V)
31 eqid 2736 . . . . . . 7 (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) = (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦})
3231elrnmpt 5911 . . . . . 6 ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ V → ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑦𝑋 {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}))
338, 30, 323syl 18 . . . . 5 ((𝑅𝑉𝑃𝑋) → ({𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑦𝑋 {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}))
3429, 33mpbird 256 . . . 4 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}))
3522, 34sselid 3942 . . 3 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥})))
3621, 35sselid 3942 . 2 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ ({𝑋} ∪ (ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦𝑋 ↦ {𝑥𝑋 ∣ ¬ 𝑦𝑅𝑥}))))
3720, 36sseldd 3945 1 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ (ordTop‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073  {crab 3407  Vcvv 3445  cun 3908  wss 3910  {csn 4586   cuni 4865   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634  cfv 6496  ficfi 9346  topGenctg 17319  ordTopcordt 17381  TopBasesctb 22295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-om 7803  df-1o 8412  df-en 8884  df-fin 8887  df-fi 9347  df-topgen 17325  df-ordt 17383  df-bases 22296
This theorem is referenced by:  ordtopn3  22547  ordtcld1  22548  ordtrest  22553  ordtrest2lem  22554  ordthauslem  22734  ordthmeolem  23152  ordtrestNEW  32502  ordtrest2NEWlem  32503
  Copyright terms: Public domain W3C validator