Step | Hyp | Ref
| Expression |
1 | | ordttopon.3 |
. . . . . . . . 9
⊢ 𝑋 = dom 𝑅 |
2 | | eqid 2738 |
. . . . . . . . 9
⊢ ran
(𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) |
3 | | eqid 2738 |
. . . . . . . . 9
⊢ ran
(𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) |
4 | 1, 2, 3 | ordtuni 22341 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → 𝑋 = ∪ ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) |
5 | 4 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → 𝑋 = ∪ ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) |
6 | | dmexg 7750 |
. . . . . . . . 9
⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) |
7 | 1, 6 | eqeltrid 2843 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → 𝑋 ∈ V) |
8 | 7 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → 𝑋 ∈ V) |
9 | 5, 8 | eqeltrrd 2840 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ∪
({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V) |
10 | | uniexb 7614 |
. . . . . 6
⊢ (({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V ↔ ∪ ({𝑋}
∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V) |
11 | 9, 10 | sylibr 233 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V) |
12 | | ssfii 9178 |
. . . . 5
⊢ (({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ∈ V → ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))))) |
13 | 11, 12 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))))) |
14 | | fibas 22127 |
. . . . 5
⊢
(fi‘({𝑋} ∪
(ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ∈ TopBases |
15 | | bastg 22116 |
. . . . 5
⊢
((fi‘({𝑋}
∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ∈ TopBases →
(fi‘({𝑋} ∪ (ran
(𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))))) |
16 | 14, 15 | ax-mp 5 |
. . . 4
⊢
(fi‘({𝑋} ∪
(ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))))) |
17 | 13, 16 | sstrdi 3933 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (topGen‘(fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))))) |
18 | 1, 2, 3 | ordtval 22340 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))))) |
19 | 18 | adantr 481 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))))) |
20 | 17, 19 | sseqtrrd 3962 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) ⊆ (ordTop‘𝑅)) |
21 | | ssun2 4107 |
. . 3
⊢ (ran
(𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) ⊆ ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) |
22 | | ssun1 4106 |
. . . 4
⊢ ran
(𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ⊆ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})) |
23 | | simpr 485 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → 𝑃 ∈ 𝑋) |
24 | | eqidd 2739 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃}) |
25 | | breq2 5078 |
. . . . . . . . 9
⊢ (𝑦 = 𝑃 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝑃)) |
26 | 25 | notbid 318 |
. . . . . . . 8
⊢ (𝑦 = 𝑃 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝑃)) |
27 | 26 | rabbidv 3414 |
. . . . . . 7
⊢ (𝑦 = 𝑃 → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃}) |
28 | 27 | rspceeqv 3575 |
. . . . . 6
⊢ ((𝑃 ∈ 𝑋 ∧ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃}) → ∃𝑦 ∈ 𝑋 {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) |
29 | 23, 24, 28 | syl2anc 584 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) |
30 | | rabexg 5255 |
. . . . . 6
⊢ (𝑋 ∈ V → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ V) |
31 | | eqid 2738 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) = (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) |
32 | 31 | elrnmpt 5865 |
. . . . . 6
⊢ ({𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ V → ({𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑦 ∈ 𝑋 {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦})) |
33 | 8, 30, 32 | 3syl 18 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ↔ ∃𝑦 ∈ 𝑋 {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦})) |
34 | 29, 33 | mpbird 256 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦})) |
35 | 22, 34 | sselid 3919 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}))) |
36 | 21, 35 | sselid 3919 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ ({𝑋} ∪ (ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑦 ∈ 𝑋 ↦ {𝑥 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥})))) |
37 | 20, 36 | sseldd 3922 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ (ordTop‘𝑅)) |