MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbas Structured version   Visualization version   GIF version

Theorem ordtbas 22343
Description: In a total order, the finite intersections of the open rays generates the set of open intervals, but no more - these four collections form a subbasis for the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1 𝑋 = dom 𝑅
ordtval.2 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
ordtval.3 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
ordtval.4 𝐶 = ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
Assertion
Ref Expression
ordtbas (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴𝐵))) = (({𝑋} ∪ (𝐴𝐵)) ∪ 𝐶))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑥,𝑎,𝑦,𝑅,𝑏   𝑋,𝑎,𝑏,𝑥,𝑦   𝐵,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem ordtbas
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5354 . . . . . 6 {𝑋} ∈ V
2 ssun2 4107 . . . . . . 7 (𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵))
3 ordtval.1 . . . . . . . . . 10 𝑋 = dom 𝑅
4 ordtval.2 . . . . . . . . . 10 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
5 ordtval.3 . . . . . . . . . 10 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
63, 4, 5ordtuni 22341 . . . . . . . . 9 (𝑅 ∈ TosetRel → 𝑋 = ({𝑋} ∪ (𝐴𝐵)))
7 dmexg 7750 . . . . . . . . . 10 (𝑅 ∈ TosetRel → dom 𝑅 ∈ V)
83, 7eqeltrid 2843 . . . . . . . . 9 (𝑅 ∈ TosetRel → 𝑋 ∈ V)
96, 8eqeltrrd 2840 . . . . . . . 8 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ∈ V)
10 uniexb 7614 . . . . . . . 8 (({𝑋} ∪ (𝐴𝐵)) ∈ V ↔ ({𝑋} ∪ (𝐴𝐵)) ∈ V)
119, 10sylibr 233 . . . . . . 7 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ∈ V)
12 ssexg 5247 . . . . . . 7 (((𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵)) ∧ ({𝑋} ∪ (𝐴𝐵)) ∈ V) → (𝐴𝐵) ∈ V)
132, 11, 12sylancr 587 . . . . . 6 (𝑅 ∈ TosetRel → (𝐴𝐵) ∈ V)
14 elfiun 9189 . . . . . 6 (({𝑋} ∈ V ∧ (𝐴𝐵) ∈ V) → (𝑧 ∈ (fi‘({𝑋} ∪ (𝐴𝐵))) ↔ (𝑧 ∈ (fi‘{𝑋}) ∨ 𝑧 ∈ (fi‘(𝐴𝐵)) ∨ ∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴𝐵))𝑧 = (𝑚𝑛))))
151, 13, 14sylancr 587 . . . . 5 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘({𝑋} ∪ (𝐴𝐵))) ↔ (𝑧 ∈ (fi‘{𝑋}) ∨ 𝑧 ∈ (fi‘(𝐴𝐵)) ∨ ∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴𝐵))𝑧 = (𝑚𝑛))))
16 fisn 9186 . . . . . . . . 9 (fi‘{𝑋}) = {𝑋}
17 ssun1 4106 . . . . . . . . 9 {𝑋} ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))
1816, 17eqsstri 3955 . . . . . . . 8 (fi‘{𝑋}) ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))
1918sseli 3917 . . . . . . 7 (𝑧 ∈ (fi‘{𝑋}) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
2019a1i 11 . . . . . 6 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘{𝑋}) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
21 ordtval.4 . . . . . . . . 9 𝐶 = ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
223, 4, 5, 21ordtbas2 22342 . . . . . . . 8 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶))
23 ssun2 4107 . . . . . . . 8 ((𝐴𝐵) ∪ 𝐶) ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))
2422, 23eqsstrdi 3975 . . . . . . 7 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
2524sseld 3920 . . . . . 6 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘(𝐴𝐵)) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
26 fipwuni 9185 . . . . . . . . . . . . . . 15 (fi‘(𝐴𝐵)) ⊆ 𝒫 (𝐴𝐵)
2726sseli 3917 . . . . . . . . . . . . . 14 (𝑛 ∈ (fi‘(𝐴𝐵)) → 𝑛 ∈ 𝒫 (𝐴𝐵))
2827elpwid 4544 . . . . . . . . . . . . 13 (𝑛 ∈ (fi‘(𝐴𝐵)) → 𝑛 (𝐴𝐵))
2928ad2antll 726 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑛 (𝐴𝐵))
302unissi 4848 . . . . . . . . . . . . . 14 (𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵))
3130, 6sseqtrrid 3974 . . . . . . . . . . . . 13 (𝑅 ∈ TosetRel → (𝐴𝐵) ⊆ 𝑋)
3231adantr 481 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → (𝐴𝐵) ⊆ 𝑋)
3329, 32sstrd 3931 . . . . . . . . . . 11 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑛𝑋)
34 simprl 768 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑚 ∈ (fi‘{𝑋}))
3534, 16eleqtrdi 2849 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑚 ∈ {𝑋})
36 elsni 4578 . . . . . . . . . . . 12 (𝑚 ∈ {𝑋} → 𝑚 = 𝑋)
3735, 36syl 17 . . . . . . . . . . 11 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑚 = 𝑋)
3833, 37sseqtrrd 3962 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑛𝑚)
39 sseqin2 4149 . . . . . . . . . 10 (𝑛𝑚 ↔ (𝑚𝑛) = 𝑛)
4038, 39sylib 217 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → (𝑚𝑛) = 𝑛)
4124sselda 3921 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ 𝑛 ∈ (fi‘(𝐴𝐵))) → 𝑛 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
4241adantrl 713 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑛 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
4340, 42eqeltrd 2839 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → (𝑚𝑛) ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
44 eleq1 2826 . . . . . . . 8 (𝑧 = (𝑚𝑛) → (𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)) ↔ (𝑚𝑛) ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4543, 44syl5ibrcom 246 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → (𝑧 = (𝑚𝑛) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4645rexlimdvva 3223 . . . . . 6 (𝑅 ∈ TosetRel → (∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴𝐵))𝑧 = (𝑚𝑛) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4720, 25, 463jaod 1427 . . . . 5 (𝑅 ∈ TosetRel → ((𝑧 ∈ (fi‘{𝑋}) ∨ 𝑧 ∈ (fi‘(𝐴𝐵)) ∨ ∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴𝐵))𝑧 = (𝑚𝑛)) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4815, 47sylbid 239 . . . 4 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘({𝑋} ∪ (𝐴𝐵))) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4948ssrdv 3927 . . 3 (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴𝐵))) ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
50 ssfii 9178 . . . . . 6 (({𝑋} ∪ (𝐴𝐵)) ∈ V → ({𝑋} ∪ (𝐴𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5111, 50syl 17 . . . . 5 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5251unssad 4121 . . . 4 (𝑅 ∈ TosetRel → {𝑋} ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
53 fiss 9183 . . . . . 6 ((({𝑋} ∪ (𝐴𝐵)) ∈ V ∧ (𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵))) → (fi‘(𝐴𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5411, 2, 53sylancl 586 . . . . 5 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5522, 54eqsstrrd 3960 . . . 4 (𝑅 ∈ TosetRel → ((𝐴𝐵) ∪ 𝐶) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5652, 55unssd 4120 . . 3 (𝑅 ∈ TosetRel → ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5749, 56eqssd 3938 . 2 (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴𝐵))) = ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
58 unass 4100 . 2 (({𝑋} ∪ (𝐴𝐵)) ∪ 𝐶) = ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))
5957, 58eqtr4di 2796 1 (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴𝐵))) = (({𝑋} ∪ (𝐴𝐵)) ∪ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  Vcvv 3432  cun 3885  cin 3886  wss 3887  𝒫 cpw 4533  {csn 4561   cuni 4839   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590  cfv 6433  cmpo 7277  ficfi 9169   TosetRel ctsr 18283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-en 8734  df-fin 8737  df-fi 9170  df-ps 18284  df-tsr 18285
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator