MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbas Structured version   Visualization version   GIF version

Theorem ordtbas 23130
Description: In a total order, the finite intersections of the open rays generates the set of open intervals, but no more - these four collections form a subbasis for the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1 𝑋 = dom 𝑅
ordtval.2 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
ordtval.3 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
ordtval.4 𝐶 = ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
Assertion
Ref Expression
ordtbas (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴𝐵))) = (({𝑋} ∪ (𝐴𝐵)) ∪ 𝐶))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑥,𝑎,𝑦,𝑅,𝑏   𝑋,𝑎,𝑏,𝑥,𝑦   𝐵,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem ordtbas
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5406 . . . . . 6 {𝑋} ∈ V
2 ssun2 4154 . . . . . . 7 (𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵))
3 ordtval.1 . . . . . . . . . 10 𝑋 = dom 𝑅
4 ordtval.2 . . . . . . . . . 10 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
5 ordtval.3 . . . . . . . . . 10 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
63, 4, 5ordtuni 23128 . . . . . . . . 9 (𝑅 ∈ TosetRel → 𝑋 = ({𝑋} ∪ (𝐴𝐵)))
7 dmexg 7897 . . . . . . . . . 10 (𝑅 ∈ TosetRel → dom 𝑅 ∈ V)
83, 7eqeltrid 2838 . . . . . . . . 9 (𝑅 ∈ TosetRel → 𝑋 ∈ V)
96, 8eqeltrrd 2835 . . . . . . . 8 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ∈ V)
10 uniexb 7758 . . . . . . . 8 (({𝑋} ∪ (𝐴𝐵)) ∈ V ↔ ({𝑋} ∪ (𝐴𝐵)) ∈ V)
119, 10sylibr 234 . . . . . . 7 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ∈ V)
12 ssexg 5293 . . . . . . 7 (((𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵)) ∧ ({𝑋} ∪ (𝐴𝐵)) ∈ V) → (𝐴𝐵) ∈ V)
132, 11, 12sylancr 587 . . . . . 6 (𝑅 ∈ TosetRel → (𝐴𝐵) ∈ V)
14 elfiun 9442 . . . . . 6 (({𝑋} ∈ V ∧ (𝐴𝐵) ∈ V) → (𝑧 ∈ (fi‘({𝑋} ∪ (𝐴𝐵))) ↔ (𝑧 ∈ (fi‘{𝑋}) ∨ 𝑧 ∈ (fi‘(𝐴𝐵)) ∨ ∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴𝐵))𝑧 = (𝑚𝑛))))
151, 13, 14sylancr 587 . . . . 5 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘({𝑋} ∪ (𝐴𝐵))) ↔ (𝑧 ∈ (fi‘{𝑋}) ∨ 𝑧 ∈ (fi‘(𝐴𝐵)) ∨ ∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴𝐵))𝑧 = (𝑚𝑛))))
16 fisn 9439 . . . . . . . . 9 (fi‘{𝑋}) = {𝑋}
17 ssun1 4153 . . . . . . . . 9 {𝑋} ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))
1816, 17eqsstri 4005 . . . . . . . 8 (fi‘{𝑋}) ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))
1918sseli 3954 . . . . . . 7 (𝑧 ∈ (fi‘{𝑋}) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
2019a1i 11 . . . . . 6 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘{𝑋}) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
21 ordtval.4 . . . . . . . . 9 𝐶 = ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
223, 4, 5, 21ordtbas2 23129 . . . . . . . 8 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶))
23 ssun2 4154 . . . . . . . 8 ((𝐴𝐵) ∪ 𝐶) ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))
2422, 23eqsstrdi 4003 . . . . . . 7 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
2524sseld 3957 . . . . . 6 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘(𝐴𝐵)) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
26 fipwuni 9438 . . . . . . . . . . . . . . 15 (fi‘(𝐴𝐵)) ⊆ 𝒫 (𝐴𝐵)
2726sseli 3954 . . . . . . . . . . . . . 14 (𝑛 ∈ (fi‘(𝐴𝐵)) → 𝑛 ∈ 𝒫 (𝐴𝐵))
2827elpwid 4584 . . . . . . . . . . . . 13 (𝑛 ∈ (fi‘(𝐴𝐵)) → 𝑛 (𝐴𝐵))
2928ad2antll 729 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑛 (𝐴𝐵))
302unissi 4892 . . . . . . . . . . . . . 14 (𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵))
3130, 6sseqtrrid 4002 . . . . . . . . . . . . 13 (𝑅 ∈ TosetRel → (𝐴𝐵) ⊆ 𝑋)
3231adantr 480 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → (𝐴𝐵) ⊆ 𝑋)
3329, 32sstrd 3969 . . . . . . . . . . 11 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑛𝑋)
34 simprl 770 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑚 ∈ (fi‘{𝑋}))
3534, 16eleqtrdi 2844 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑚 ∈ {𝑋})
36 elsni 4618 . . . . . . . . . . . 12 (𝑚 ∈ {𝑋} → 𝑚 = 𝑋)
3735, 36syl 17 . . . . . . . . . . 11 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑚 = 𝑋)
3833, 37sseqtrrd 3996 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑛𝑚)
39 sseqin2 4198 . . . . . . . . . 10 (𝑛𝑚 ↔ (𝑚𝑛) = 𝑛)
4038, 39sylib 218 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → (𝑚𝑛) = 𝑛)
4124sselda 3958 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ 𝑛 ∈ (fi‘(𝐴𝐵))) → 𝑛 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
4241adantrl 716 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑛 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
4340, 42eqeltrd 2834 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → (𝑚𝑛) ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
44 eleq1 2822 . . . . . . . 8 (𝑧 = (𝑚𝑛) → (𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)) ↔ (𝑚𝑛) ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4543, 44syl5ibrcom 247 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → (𝑧 = (𝑚𝑛) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4645rexlimdvva 3198 . . . . . 6 (𝑅 ∈ TosetRel → (∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴𝐵))𝑧 = (𝑚𝑛) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4720, 25, 463jaod 1431 . . . . 5 (𝑅 ∈ TosetRel → ((𝑧 ∈ (fi‘{𝑋}) ∨ 𝑧 ∈ (fi‘(𝐴𝐵)) ∨ ∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴𝐵))𝑧 = (𝑚𝑛)) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4815, 47sylbid 240 . . . 4 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘({𝑋} ∪ (𝐴𝐵))) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4948ssrdv 3964 . . 3 (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴𝐵))) ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
50 ssfii 9431 . . . . . 6 (({𝑋} ∪ (𝐴𝐵)) ∈ V → ({𝑋} ∪ (𝐴𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5111, 50syl 17 . . . . 5 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5251unssad 4168 . . . 4 (𝑅 ∈ TosetRel → {𝑋} ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
53 fiss 9436 . . . . . 6 ((({𝑋} ∪ (𝐴𝐵)) ∈ V ∧ (𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵))) → (fi‘(𝐴𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5411, 2, 53sylancl 586 . . . . 5 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5522, 54eqsstrrd 3994 . . . 4 (𝑅 ∈ TosetRel → ((𝐴𝐵) ∪ 𝐶) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5652, 55unssd 4167 . . 3 (𝑅 ∈ TosetRel → ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5749, 56eqssd 3976 . 2 (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴𝐵))) = ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
58 unass 4147 . 2 (({𝑋} ∪ (𝐴𝐵)) ∪ 𝐶) = ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))
5957, 58eqtr4di 2788 1 (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴𝐵))) = (({𝑋} ∪ (𝐴𝐵)) ∪ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2108  wrex 3060  {crab 3415  Vcvv 3459  cun 3924  cin 3925  wss 3926  𝒫 cpw 4575  {csn 4601   cuni 4883   class class class wbr 5119  cmpt 5201  dom cdm 5654  ran crn 5655  cfv 6531  cmpo 7407  ficfi 9422   TosetRel ctsr 18575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-1o 8480  df-2o 8481  df-en 8960  df-fin 8963  df-fi 9423  df-ps 18576  df-tsr 18577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator