Step | Hyp | Ref
| Expression |
1 | | snex 5349 |
. . . . . 6
⊢ {𝑋} ∈ V |
2 | | ssun2 4103 |
. . . . . . 7
⊢ (𝐴 ∪ 𝐵) ⊆ ({𝑋} ∪ (𝐴 ∪ 𝐵)) |
3 | | ordtval.1 |
. . . . . . . . . 10
⊢ 𝑋 = dom 𝑅 |
4 | | ordtval.2 |
. . . . . . . . . 10
⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) |
5 | | ordtval.3 |
. . . . . . . . . 10
⊢ 𝐵 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) |
6 | 3, 4, 5 | ordtuni 22249 |
. . . . . . . . 9
⊢ (𝑅 ∈ TosetRel → 𝑋 = ∪
({𝑋} ∪ (𝐴 ∪ 𝐵))) |
7 | | dmexg 7724 |
. . . . . . . . . 10
⊢ (𝑅 ∈ TosetRel → dom
𝑅 ∈
V) |
8 | 3, 7 | eqeltrid 2843 |
. . . . . . . . 9
⊢ (𝑅 ∈ TosetRel → 𝑋 ∈ V) |
9 | 6, 8 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (𝑅 ∈ TosetRel → ∪ ({𝑋}
∪ (𝐴 ∪ 𝐵)) ∈ V) |
10 | | uniexb 7592 |
. . . . . . . 8
⊢ (({𝑋} ∪ (𝐴 ∪ 𝐵)) ∈ V ↔ ∪ ({𝑋}
∪ (𝐴 ∪ 𝐵)) ∈ V) |
11 | 9, 10 | sylibr 233 |
. . . . . . 7
⊢ (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴 ∪ 𝐵)) ∈ V) |
12 | | ssexg 5242 |
. . . . . . 7
⊢ (((𝐴 ∪ 𝐵) ⊆ ({𝑋} ∪ (𝐴 ∪ 𝐵)) ∧ ({𝑋} ∪ (𝐴 ∪ 𝐵)) ∈ V) → (𝐴 ∪ 𝐵) ∈ V) |
13 | 2, 11, 12 | sylancr 586 |
. . . . . 6
⊢ (𝑅 ∈ TosetRel → (𝐴 ∪ 𝐵) ∈ V) |
14 | | elfiun 9119 |
. . . . . 6
⊢ (({𝑋} ∈ V ∧ (𝐴 ∪ 𝐵) ∈ V) → (𝑧 ∈ (fi‘({𝑋} ∪ (𝐴 ∪ 𝐵))) ↔ (𝑧 ∈ (fi‘{𝑋}) ∨ 𝑧 ∈ (fi‘(𝐴 ∪ 𝐵)) ∨ ∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴 ∪ 𝐵))𝑧 = (𝑚 ∩ 𝑛)))) |
15 | 1, 13, 14 | sylancr 586 |
. . . . 5
⊢ (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘({𝑋} ∪ (𝐴 ∪ 𝐵))) ↔ (𝑧 ∈ (fi‘{𝑋}) ∨ 𝑧 ∈ (fi‘(𝐴 ∪ 𝐵)) ∨ ∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴 ∪ 𝐵))𝑧 = (𝑚 ∩ 𝑛)))) |
16 | | fisn 9116 |
. . . . . . . . 9
⊢
(fi‘{𝑋}) =
{𝑋} |
17 | | ssun1 4102 |
. . . . . . . . 9
⊢ {𝑋} ⊆ ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶)) |
18 | 16, 17 | eqsstri 3951 |
. . . . . . . 8
⊢
(fi‘{𝑋})
⊆ ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶)) |
19 | 18 | sseli 3913 |
. . . . . . 7
⊢ (𝑧 ∈ (fi‘{𝑋}) → 𝑧 ∈ ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶))) |
20 | 19 | a1i 11 |
. . . . . 6
⊢ (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘{𝑋}) → 𝑧 ∈ ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶)))) |
21 | | ordtval.4 |
. . . . . . . . 9
⊢ 𝐶 = ran (𝑎 ∈ 𝑋, 𝑏 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) |
22 | 3, 4, 5, 21 | ordtbas2 22250 |
. . . . . . . 8
⊢ (𝑅 ∈ TosetRel →
(fi‘(𝐴 ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∪ 𝐶)) |
23 | | ssun2 4103 |
. . . . . . . 8
⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) ⊆ ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶)) |
24 | 22, 23 | eqsstrdi 3971 |
. . . . . . 7
⊢ (𝑅 ∈ TosetRel →
(fi‘(𝐴 ∪ 𝐵)) ⊆ ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶))) |
25 | 24 | sseld 3916 |
. . . . . 6
⊢ (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘(𝐴 ∪ 𝐵)) → 𝑧 ∈ ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶)))) |
26 | | fipwuni 9115 |
. . . . . . . . . . . . . . 15
⊢
(fi‘(𝐴 ∪
𝐵)) ⊆ 𝒫 ∪ (𝐴
∪ 𝐵) |
27 | 26 | sseli 3913 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (fi‘(𝐴 ∪ 𝐵)) → 𝑛 ∈ 𝒫 ∪ (𝐴
∪ 𝐵)) |
28 | 27 | elpwid 4541 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (fi‘(𝐴 ∪ 𝐵)) → 𝑛 ⊆ ∪ (𝐴 ∪ 𝐵)) |
29 | 28 | ad2antll 725 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴 ∪ 𝐵)))) → 𝑛 ⊆ ∪ (𝐴 ∪ 𝐵)) |
30 | 2 | unissi 4845 |
. . . . . . . . . . . . . 14
⊢ ∪ (𝐴
∪ 𝐵) ⊆ ∪ ({𝑋}
∪ (𝐴 ∪ 𝐵)) |
31 | 30, 6 | sseqtrrid 3970 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ TosetRel → ∪ (𝐴
∪ 𝐵) ⊆ 𝑋) |
32 | 31 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴 ∪ 𝐵)))) → ∪
(𝐴 ∪ 𝐵) ⊆ 𝑋) |
33 | 29, 32 | sstrd 3927 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴 ∪ 𝐵)))) → 𝑛 ⊆ 𝑋) |
34 | | simprl 767 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴 ∪ 𝐵)))) → 𝑚 ∈ (fi‘{𝑋})) |
35 | 34, 16 | eleqtrdi 2849 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴 ∪ 𝐵)))) → 𝑚 ∈ {𝑋}) |
36 | | elsni 4575 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ {𝑋} → 𝑚 = 𝑋) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴 ∪ 𝐵)))) → 𝑚 = 𝑋) |
38 | 33, 37 | sseqtrrd 3958 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴 ∪ 𝐵)))) → 𝑛 ⊆ 𝑚) |
39 | | sseqin2 4146 |
. . . . . . . . . 10
⊢ (𝑛 ⊆ 𝑚 ↔ (𝑚 ∩ 𝑛) = 𝑛) |
40 | 38, 39 | sylib 217 |
. . . . . . . . 9
⊢ ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴 ∪ 𝐵)))) → (𝑚 ∩ 𝑛) = 𝑛) |
41 | 24 | sselda 3917 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ TosetRel ∧ 𝑛 ∈ (fi‘(𝐴 ∪ 𝐵))) → 𝑛 ∈ ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶))) |
42 | 41 | adantrl 712 |
. . . . . . . . 9
⊢ ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴 ∪ 𝐵)))) → 𝑛 ∈ ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶))) |
43 | 40, 42 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴 ∪ 𝐵)))) → (𝑚 ∩ 𝑛) ∈ ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶))) |
44 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑧 = (𝑚 ∩ 𝑛) → (𝑧 ∈ ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶)) ↔ (𝑚 ∩ 𝑛) ∈ ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶)))) |
45 | 43, 44 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴 ∪ 𝐵)))) → (𝑧 = (𝑚 ∩ 𝑛) → 𝑧 ∈ ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶)))) |
46 | 45 | rexlimdvva 3222 |
. . . . . 6
⊢ (𝑅 ∈ TosetRel →
(∃𝑚 ∈
(fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴 ∪ 𝐵))𝑧 = (𝑚 ∩ 𝑛) → 𝑧 ∈ ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶)))) |
47 | 20, 25, 46 | 3jaod 1426 |
. . . . 5
⊢ (𝑅 ∈ TosetRel → ((𝑧 ∈ (fi‘{𝑋}) ∨ 𝑧 ∈ (fi‘(𝐴 ∪ 𝐵)) ∨ ∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴 ∪ 𝐵))𝑧 = (𝑚 ∩ 𝑛)) → 𝑧 ∈ ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶)))) |
48 | 15, 47 | sylbid 239 |
. . . 4
⊢ (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘({𝑋} ∪ (𝐴 ∪ 𝐵))) → 𝑧 ∈ ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶)))) |
49 | 48 | ssrdv 3923 |
. . 3
⊢ (𝑅 ∈ TosetRel →
(fi‘({𝑋} ∪ (𝐴 ∪ 𝐵))) ⊆ ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶))) |
50 | | ssfii 9108 |
. . . . . 6
⊢ (({𝑋} ∪ (𝐴 ∪ 𝐵)) ∈ V → ({𝑋} ∪ (𝐴 ∪ 𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴 ∪ 𝐵)))) |
51 | 11, 50 | syl 17 |
. . . . 5
⊢ (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴 ∪ 𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴 ∪ 𝐵)))) |
52 | 51 | unssad 4117 |
. . . 4
⊢ (𝑅 ∈ TosetRel → {𝑋} ⊆ (fi‘({𝑋} ∪ (𝐴 ∪ 𝐵)))) |
53 | | fiss 9113 |
. . . . . 6
⊢ ((({𝑋} ∪ (𝐴 ∪ 𝐵)) ∈ V ∧ (𝐴 ∪ 𝐵) ⊆ ({𝑋} ∪ (𝐴 ∪ 𝐵))) → (fi‘(𝐴 ∪ 𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴 ∪ 𝐵)))) |
54 | 11, 2, 53 | sylancl 585 |
. . . . 5
⊢ (𝑅 ∈ TosetRel →
(fi‘(𝐴 ∪ 𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴 ∪ 𝐵)))) |
55 | 22, 54 | eqsstrrd 3956 |
. . . 4
⊢ (𝑅 ∈ TosetRel → ((𝐴 ∪ 𝐵) ∪ 𝐶) ⊆ (fi‘({𝑋} ∪ (𝐴 ∪ 𝐵)))) |
56 | 52, 55 | unssd 4116 |
. . 3
⊢ (𝑅 ∈ TosetRel → ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶)) ⊆ (fi‘({𝑋} ∪ (𝐴 ∪ 𝐵)))) |
57 | 49, 56 | eqssd 3934 |
. 2
⊢ (𝑅 ∈ TosetRel →
(fi‘({𝑋} ∪ (𝐴 ∪ 𝐵))) = ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶))) |
58 | | unass 4096 |
. 2
⊢ (({𝑋} ∪ (𝐴 ∪ 𝐵)) ∪ 𝐶) = ({𝑋} ∪ ((𝐴 ∪ 𝐵) ∪ 𝐶)) |
59 | 57, 58 | eqtr4di 2797 |
1
⊢ (𝑅 ∈ TosetRel →
(fi‘({𝑋} ∪ (𝐴 ∪ 𝐵))) = (({𝑋} ∪ (𝐴 ∪ 𝐵)) ∪ 𝐶)) |