MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbas Structured version   Visualization version   GIF version

Theorem ordtbas 22251
Description: In a total order, the finite intersections of the open rays generates the set of open intervals, but no more - these four collections form a subbasis for the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1 𝑋 = dom 𝑅
ordtval.2 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
ordtval.3 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
ordtval.4 𝐶 = ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
Assertion
Ref Expression
ordtbas (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴𝐵))) = (({𝑋} ∪ (𝐴𝐵)) ∪ 𝐶))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑥,𝑎,𝑦,𝑅,𝑏   𝑋,𝑎,𝑏,𝑥,𝑦   𝐵,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem ordtbas
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5349 . . . . . 6 {𝑋} ∈ V
2 ssun2 4103 . . . . . . 7 (𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵))
3 ordtval.1 . . . . . . . . . 10 𝑋 = dom 𝑅
4 ordtval.2 . . . . . . . . . 10 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
5 ordtval.3 . . . . . . . . . 10 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
63, 4, 5ordtuni 22249 . . . . . . . . 9 (𝑅 ∈ TosetRel → 𝑋 = ({𝑋} ∪ (𝐴𝐵)))
7 dmexg 7724 . . . . . . . . . 10 (𝑅 ∈ TosetRel → dom 𝑅 ∈ V)
83, 7eqeltrid 2843 . . . . . . . . 9 (𝑅 ∈ TosetRel → 𝑋 ∈ V)
96, 8eqeltrrd 2840 . . . . . . . 8 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ∈ V)
10 uniexb 7592 . . . . . . . 8 (({𝑋} ∪ (𝐴𝐵)) ∈ V ↔ ({𝑋} ∪ (𝐴𝐵)) ∈ V)
119, 10sylibr 233 . . . . . . 7 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ∈ V)
12 ssexg 5242 . . . . . . 7 (((𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵)) ∧ ({𝑋} ∪ (𝐴𝐵)) ∈ V) → (𝐴𝐵) ∈ V)
132, 11, 12sylancr 586 . . . . . 6 (𝑅 ∈ TosetRel → (𝐴𝐵) ∈ V)
14 elfiun 9119 . . . . . 6 (({𝑋} ∈ V ∧ (𝐴𝐵) ∈ V) → (𝑧 ∈ (fi‘({𝑋} ∪ (𝐴𝐵))) ↔ (𝑧 ∈ (fi‘{𝑋}) ∨ 𝑧 ∈ (fi‘(𝐴𝐵)) ∨ ∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴𝐵))𝑧 = (𝑚𝑛))))
151, 13, 14sylancr 586 . . . . 5 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘({𝑋} ∪ (𝐴𝐵))) ↔ (𝑧 ∈ (fi‘{𝑋}) ∨ 𝑧 ∈ (fi‘(𝐴𝐵)) ∨ ∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴𝐵))𝑧 = (𝑚𝑛))))
16 fisn 9116 . . . . . . . . 9 (fi‘{𝑋}) = {𝑋}
17 ssun1 4102 . . . . . . . . 9 {𝑋} ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))
1816, 17eqsstri 3951 . . . . . . . 8 (fi‘{𝑋}) ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))
1918sseli 3913 . . . . . . 7 (𝑧 ∈ (fi‘{𝑋}) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
2019a1i 11 . . . . . 6 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘{𝑋}) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
21 ordtval.4 . . . . . . . . 9 𝐶 = ran (𝑎𝑋, 𝑏𝑋 ↦ {𝑦𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)})
223, 4, 5, 21ordtbas2 22250 . . . . . . . 8 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) = ((𝐴𝐵) ∪ 𝐶))
23 ssun2 4103 . . . . . . . 8 ((𝐴𝐵) ∪ 𝐶) ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))
2422, 23eqsstrdi 3971 . . . . . . 7 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
2524sseld 3916 . . . . . 6 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘(𝐴𝐵)) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
26 fipwuni 9115 . . . . . . . . . . . . . . 15 (fi‘(𝐴𝐵)) ⊆ 𝒫 (𝐴𝐵)
2726sseli 3913 . . . . . . . . . . . . . 14 (𝑛 ∈ (fi‘(𝐴𝐵)) → 𝑛 ∈ 𝒫 (𝐴𝐵))
2827elpwid 4541 . . . . . . . . . . . . 13 (𝑛 ∈ (fi‘(𝐴𝐵)) → 𝑛 (𝐴𝐵))
2928ad2antll 725 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑛 (𝐴𝐵))
302unissi 4845 . . . . . . . . . . . . . 14 (𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵))
3130, 6sseqtrrid 3970 . . . . . . . . . . . . 13 (𝑅 ∈ TosetRel → (𝐴𝐵) ⊆ 𝑋)
3231adantr 480 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → (𝐴𝐵) ⊆ 𝑋)
3329, 32sstrd 3927 . . . . . . . . . . 11 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑛𝑋)
34 simprl 767 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑚 ∈ (fi‘{𝑋}))
3534, 16eleqtrdi 2849 . . . . . . . . . . . 12 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑚 ∈ {𝑋})
36 elsni 4575 . . . . . . . . . . . 12 (𝑚 ∈ {𝑋} → 𝑚 = 𝑋)
3735, 36syl 17 . . . . . . . . . . 11 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑚 = 𝑋)
3833, 37sseqtrrd 3958 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑛𝑚)
39 sseqin2 4146 . . . . . . . . . 10 (𝑛𝑚 ↔ (𝑚𝑛) = 𝑛)
4038, 39sylib 217 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → (𝑚𝑛) = 𝑛)
4124sselda 3917 . . . . . . . . . 10 ((𝑅 ∈ TosetRel ∧ 𝑛 ∈ (fi‘(𝐴𝐵))) → 𝑛 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
4241adantrl 712 . . . . . . . . 9 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → 𝑛 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
4340, 42eqeltrd 2839 . . . . . . . 8 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → (𝑚𝑛) ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
44 eleq1 2826 . . . . . . . 8 (𝑧 = (𝑚𝑛) → (𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)) ↔ (𝑚𝑛) ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4543, 44syl5ibrcom 246 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ (𝑚 ∈ (fi‘{𝑋}) ∧ 𝑛 ∈ (fi‘(𝐴𝐵)))) → (𝑧 = (𝑚𝑛) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4645rexlimdvva 3222 . . . . . 6 (𝑅 ∈ TosetRel → (∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴𝐵))𝑧 = (𝑚𝑛) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4720, 25, 463jaod 1426 . . . . 5 (𝑅 ∈ TosetRel → ((𝑧 ∈ (fi‘{𝑋}) ∨ 𝑧 ∈ (fi‘(𝐴𝐵)) ∨ ∃𝑚 ∈ (fi‘{𝑋})∃𝑛 ∈ (fi‘(𝐴𝐵))𝑧 = (𝑚𝑛)) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4815, 47sylbid 239 . . . 4 (𝑅 ∈ TosetRel → (𝑧 ∈ (fi‘({𝑋} ∪ (𝐴𝐵))) → 𝑧 ∈ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))))
4948ssrdv 3923 . . 3 (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴𝐵))) ⊆ ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
50 ssfii 9108 . . . . . 6 (({𝑋} ∪ (𝐴𝐵)) ∈ V → ({𝑋} ∪ (𝐴𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5111, 50syl 17 . . . . 5 (𝑅 ∈ TosetRel → ({𝑋} ∪ (𝐴𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5251unssad 4117 . . . 4 (𝑅 ∈ TosetRel → {𝑋} ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
53 fiss 9113 . . . . . 6 ((({𝑋} ∪ (𝐴𝐵)) ∈ V ∧ (𝐴𝐵) ⊆ ({𝑋} ∪ (𝐴𝐵))) → (fi‘(𝐴𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5411, 2, 53sylancl 585 . . . . 5 (𝑅 ∈ TosetRel → (fi‘(𝐴𝐵)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5522, 54eqsstrrd 3956 . . . 4 (𝑅 ∈ TosetRel → ((𝐴𝐵) ∪ 𝐶) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5652, 55unssd 4116 . . 3 (𝑅 ∈ TosetRel → ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)) ⊆ (fi‘({𝑋} ∪ (𝐴𝐵))))
5749, 56eqssd 3934 . 2 (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴𝐵))) = ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶)))
58 unass 4096 . 2 (({𝑋} ∪ (𝐴𝐵)) ∪ 𝐶) = ({𝑋} ∪ ((𝐴𝐵) ∪ 𝐶))
5957, 58eqtr4di 2797 1 (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴𝐵))) = (({𝑋} ∪ (𝐴𝐵)) ∪ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3o 1084   = wceq 1539  wcel 2108  wrex 3064  {crab 3067  Vcvv 3422  cun 3881  cin 3882  wss 3883  𝒫 cpw 4530  {csn 4558   cuni 4836   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  cfv 6418  cmpo 7257  ficfi 9099   TosetRel ctsr 18198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-fin 8695  df-fi 9100  df-ps 18199  df-tsr 18200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator