![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ussid | Structured version Visualization version GIF version |
Description: In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017.) |
Ref | Expression |
---|---|
ussval.1 | ⊢ 𝐵 = (Base‘𝑊) |
ussval.2 | ⊢ 𝑈 = (UnifSet‘𝑊) |
Ref | Expression |
---|---|
ussid | ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 = (UnifSt‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7439 | . . 3 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → (𝑈 ↾t (𝐵 × 𝐵)) = (𝑈 ↾t ∪ 𝑈)) | |
2 | id 22 | . . . . . 6 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → (𝐵 × 𝐵) = ∪ 𝑈) | |
3 | ussval.1 | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑊) | |
4 | 3 | fvexi 6921 | . . . . . . 7 ⊢ 𝐵 ∈ V |
5 | 4, 4 | xpex 7772 | . . . . . 6 ⊢ (𝐵 × 𝐵) ∈ V |
6 | 2, 5 | eqeltrrdi 2848 | . . . . 5 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → ∪ 𝑈 ∈ V) |
7 | uniexb 7783 | . . . . 5 ⊢ (𝑈 ∈ V ↔ ∪ 𝑈 ∈ V) | |
8 | 6, 7 | sylibr 234 | . . . 4 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 ∈ V) |
9 | eqid 2735 | . . . . 5 ⊢ ∪ 𝑈 = ∪ 𝑈 | |
10 | 9 | restid 17480 | . . . 4 ⊢ (𝑈 ∈ V → (𝑈 ↾t ∪ 𝑈) = 𝑈) |
11 | 8, 10 | syl 17 | . . 3 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → (𝑈 ↾t ∪ 𝑈) = 𝑈) |
12 | 1, 11 | eqtr2d 2776 | . 2 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 = (𝑈 ↾t (𝐵 × 𝐵))) |
13 | ussval.2 | . . 3 ⊢ 𝑈 = (UnifSet‘𝑊) | |
14 | 3, 13 | ussval 24284 | . 2 ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊) |
15 | 12, 14 | eqtrdi 2791 | 1 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 = (UnifSt‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∪ cuni 4912 × cxp 5687 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 UnifSetcunif 17308 ↾t crest 17467 UnifStcuss 24278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-rest 17469 df-uss 24281 |
This theorem is referenced by: tususs 24295 cnflduss 25404 |
Copyright terms: Public domain | W3C validator |