| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ussid | Structured version Visualization version GIF version | ||
| Description: In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| ussval.1 | ⊢ 𝐵 = (Base‘𝑊) |
| ussval.2 | ⊢ 𝑈 = (UnifSet‘𝑊) |
| Ref | Expression |
|---|---|
| ussid | ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 = (UnifSt‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7421 | . . 3 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → (𝑈 ↾t (𝐵 × 𝐵)) = (𝑈 ↾t ∪ 𝑈)) | |
| 2 | id 22 | . . . . . 6 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → (𝐵 × 𝐵) = ∪ 𝑈) | |
| 3 | ussval.1 | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑊) | |
| 4 | 3 | fvexi 6900 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 5 | 4, 4 | xpex 7755 | . . . . . 6 ⊢ (𝐵 × 𝐵) ∈ V |
| 6 | 2, 5 | eqeltrrdi 2842 | . . . . 5 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → ∪ 𝑈 ∈ V) |
| 7 | uniexb 7766 | . . . . 5 ⊢ (𝑈 ∈ V ↔ ∪ 𝑈 ∈ V) | |
| 8 | 6, 7 | sylibr 234 | . . . 4 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 ∈ V) |
| 9 | eqid 2734 | . . . . 5 ⊢ ∪ 𝑈 = ∪ 𝑈 | |
| 10 | 9 | restid 17450 | . . . 4 ⊢ (𝑈 ∈ V → (𝑈 ↾t ∪ 𝑈) = 𝑈) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → (𝑈 ↾t ∪ 𝑈) = 𝑈) |
| 12 | 1, 11 | eqtr2d 2770 | . 2 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 = (𝑈 ↾t (𝐵 × 𝐵))) |
| 13 | ussval.2 | . . 3 ⊢ 𝑈 = (UnifSet‘𝑊) | |
| 14 | 3, 13 | ussval 24215 | . 2 ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊) |
| 15 | 12, 14 | eqtrdi 2785 | 1 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 = (UnifSt‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∪ cuni 4887 × cxp 5663 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 UnifSetcunif 17284 ↾t crest 17437 UnifStcuss 24209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-rest 17439 df-uss 24212 |
| This theorem is referenced by: tususs 24225 cnflduss 25327 |
| Copyright terms: Public domain | W3C validator |