| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ussid | Structured version Visualization version GIF version | ||
| Description: In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| ussval.1 | ⊢ 𝐵 = (Base‘𝑊) |
| ussval.2 | ⊢ 𝑈 = (UnifSet‘𝑊) |
| Ref | Expression |
|---|---|
| ussid | ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 = (UnifSt‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7377 | . . 3 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → (𝑈 ↾t (𝐵 × 𝐵)) = (𝑈 ↾t ∪ 𝑈)) | |
| 2 | id 22 | . . . . . 6 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → (𝐵 × 𝐵) = ∪ 𝑈) | |
| 3 | ussval.1 | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑊) | |
| 4 | 3 | fvexi 6854 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 5 | 4, 4 | xpex 7709 | . . . . . 6 ⊢ (𝐵 × 𝐵) ∈ V |
| 6 | 2, 5 | eqeltrrdi 2837 | . . . . 5 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → ∪ 𝑈 ∈ V) |
| 7 | uniexb 7720 | . . . . 5 ⊢ (𝑈 ∈ V ↔ ∪ 𝑈 ∈ V) | |
| 8 | 6, 7 | sylibr 234 | . . . 4 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 ∈ V) |
| 9 | eqid 2729 | . . . . 5 ⊢ ∪ 𝑈 = ∪ 𝑈 | |
| 10 | 9 | restid 17372 | . . . 4 ⊢ (𝑈 ∈ V → (𝑈 ↾t ∪ 𝑈) = 𝑈) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → (𝑈 ↾t ∪ 𝑈) = 𝑈) |
| 12 | 1, 11 | eqtr2d 2765 | . 2 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 = (𝑈 ↾t (𝐵 × 𝐵))) |
| 13 | ussval.2 | . . 3 ⊢ 𝑈 = (UnifSet‘𝑊) | |
| 14 | 3, 13 | ussval 24123 | . 2 ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊) |
| 15 | 12, 14 | eqtrdi 2780 | 1 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 = (UnifSt‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∪ cuni 4867 × cxp 5629 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 UnifSetcunif 17206 ↾t crest 17359 UnifStcuss 24117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-rest 17361 df-uss 24120 |
| This theorem is referenced by: tususs 24133 cnflduss 25232 |
| Copyright terms: Public domain | W3C validator |