MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ussid Structured version   Visualization version   GIF version

Theorem ussid 24195
Description: In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017.)
Hypotheses
Ref Expression
ussval.1 𝐵 = (Base‘𝑊)
ussval.2 𝑈 = (UnifSet‘𝑊)
Assertion
Ref Expression
ussid ((𝐵 × 𝐵) = 𝑈𝑈 = (UnifSt‘𝑊))

Proof of Theorem ussid
StepHypRef Expression
1 oveq2 7363 . . 3 ((𝐵 × 𝐵) = 𝑈 → (𝑈t (𝐵 × 𝐵)) = (𝑈t 𝑈))
2 id 22 . . . . . 6 ((𝐵 × 𝐵) = 𝑈 → (𝐵 × 𝐵) = 𝑈)
3 ussval.1 . . . . . . . 8 𝐵 = (Base‘𝑊)
43fvexi 6845 . . . . . . 7 𝐵 ∈ V
54, 4xpex 7695 . . . . . 6 (𝐵 × 𝐵) ∈ V
62, 5eqeltrrdi 2842 . . . . 5 ((𝐵 × 𝐵) = 𝑈 𝑈 ∈ V)
7 uniexb 7706 . . . . 5 (𝑈 ∈ V ↔ 𝑈 ∈ V)
86, 7sylibr 234 . . . 4 ((𝐵 × 𝐵) = 𝑈𝑈 ∈ V)
9 eqid 2733 . . . . 5 𝑈 = 𝑈
109restid 17344 . . . 4 (𝑈 ∈ V → (𝑈t 𝑈) = 𝑈)
118, 10syl 17 . . 3 ((𝐵 × 𝐵) = 𝑈 → (𝑈t 𝑈) = 𝑈)
121, 11eqtr2d 2769 . 2 ((𝐵 × 𝐵) = 𝑈𝑈 = (𝑈t (𝐵 × 𝐵)))
13 ussval.2 . . 3 𝑈 = (UnifSet‘𝑊)
143, 13ussval 24194 . 2 (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊)
1512, 14eqtrdi 2784 1 ((𝐵 × 𝐵) = 𝑈𝑈 = (UnifSt‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437   cuni 4860   × cxp 5619  cfv 6489  (class class class)co 7355  Basecbs 17127  UnifSetcunif 17178  t crest 17331  UnifStcuss 24188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-rest 17333  df-uss 24191
This theorem is referenced by:  tususs  24204  cnflduss  25303
  Copyright terms: Public domain W3C validator