MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ussid Structured version   Visualization version   GIF version

Theorem ussid 24199
Description: In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017.)
Hypotheses
Ref Expression
ussval.1 𝐵 = (Base‘𝑊)
ussval.2 𝑈 = (UnifSet‘𝑊)
Assertion
Ref Expression
ussid ((𝐵 × 𝐵) = 𝑈𝑈 = (UnifSt‘𝑊))

Proof of Theorem ussid
StepHypRef Expression
1 oveq2 7413 . . 3 ((𝐵 × 𝐵) = 𝑈 → (𝑈t (𝐵 × 𝐵)) = (𝑈t 𝑈))
2 id 22 . . . . . 6 ((𝐵 × 𝐵) = 𝑈 → (𝐵 × 𝐵) = 𝑈)
3 ussval.1 . . . . . . . 8 𝐵 = (Base‘𝑊)
43fvexi 6890 . . . . . . 7 𝐵 ∈ V
54, 4xpex 7747 . . . . . 6 (𝐵 × 𝐵) ∈ V
62, 5eqeltrrdi 2843 . . . . 5 ((𝐵 × 𝐵) = 𝑈 𝑈 ∈ V)
7 uniexb 7758 . . . . 5 (𝑈 ∈ V ↔ 𝑈 ∈ V)
86, 7sylibr 234 . . . 4 ((𝐵 × 𝐵) = 𝑈𝑈 ∈ V)
9 eqid 2735 . . . . 5 𝑈 = 𝑈
109restid 17447 . . . 4 (𝑈 ∈ V → (𝑈t 𝑈) = 𝑈)
118, 10syl 17 . . 3 ((𝐵 × 𝐵) = 𝑈 → (𝑈t 𝑈) = 𝑈)
121, 11eqtr2d 2771 . 2 ((𝐵 × 𝐵) = 𝑈𝑈 = (𝑈t (𝐵 × 𝐵)))
13 ussval.2 . . 3 𝑈 = (UnifSet‘𝑊)
143, 13ussval 24198 . 2 (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊)
1512, 14eqtrdi 2786 1 ((𝐵 × 𝐵) = 𝑈𝑈 = (UnifSt‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459   cuni 4883   × cxp 5652  cfv 6531  (class class class)co 7405  Basecbs 17228  UnifSetcunif 17281  t crest 17434  UnifStcuss 24192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-rest 17436  df-uss 24195
This theorem is referenced by:  tususs  24208  cnflduss  25308
  Copyright terms: Public domain W3C validator