MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ussid Structured version   Visualization version   GIF version

Theorem ussid 24285
Description: In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017.)
Hypotheses
Ref Expression
ussval.1 𝐵 = (Base‘𝑊)
ussval.2 𝑈 = (UnifSet‘𝑊)
Assertion
Ref Expression
ussid ((𝐵 × 𝐵) = 𝑈𝑈 = (UnifSt‘𝑊))

Proof of Theorem ussid
StepHypRef Expression
1 oveq2 7439 . . 3 ((𝐵 × 𝐵) = 𝑈 → (𝑈t (𝐵 × 𝐵)) = (𝑈t 𝑈))
2 id 22 . . . . . 6 ((𝐵 × 𝐵) = 𝑈 → (𝐵 × 𝐵) = 𝑈)
3 ussval.1 . . . . . . . 8 𝐵 = (Base‘𝑊)
43fvexi 6921 . . . . . . 7 𝐵 ∈ V
54, 4xpex 7772 . . . . . 6 (𝐵 × 𝐵) ∈ V
62, 5eqeltrrdi 2848 . . . . 5 ((𝐵 × 𝐵) = 𝑈 𝑈 ∈ V)
7 uniexb 7783 . . . . 5 (𝑈 ∈ V ↔ 𝑈 ∈ V)
86, 7sylibr 234 . . . 4 ((𝐵 × 𝐵) = 𝑈𝑈 ∈ V)
9 eqid 2735 . . . . 5 𝑈 = 𝑈
109restid 17480 . . . 4 (𝑈 ∈ V → (𝑈t 𝑈) = 𝑈)
118, 10syl 17 . . 3 ((𝐵 × 𝐵) = 𝑈 → (𝑈t 𝑈) = 𝑈)
121, 11eqtr2d 2776 . 2 ((𝐵 × 𝐵) = 𝑈𝑈 = (𝑈t (𝐵 × 𝐵)))
13 ussval.2 . . 3 𝑈 = (UnifSet‘𝑊)
143, 13ussval 24284 . 2 (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊)
1512, 14eqtrdi 2791 1 ((𝐵 × 𝐵) = 𝑈𝑈 = (UnifSt‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478   cuni 4912   × cxp 5687  cfv 6563  (class class class)co 7431  Basecbs 17245  UnifSetcunif 17308  t crest 17467  UnifStcuss 24278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-rest 17469  df-uss 24281
This theorem is referenced by:  tususs  24295  cnflduss  25404
  Copyright terms: Public domain W3C validator