![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ussid | Structured version Visualization version GIF version |
Description: In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017.) |
Ref | Expression |
---|---|
ussval.1 | β’ π΅ = (Baseβπ) |
ussval.2 | β’ π = (UnifSetβπ) |
Ref | Expression |
---|---|
ussid | β’ ((π΅ Γ π΅) = βͺ π β π = (UnifStβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7409 | . . 3 β’ ((π΅ Γ π΅) = βͺ π β (π βΎt (π΅ Γ π΅)) = (π βΎt βͺ π)) | |
2 | id 22 | . . . . . 6 β’ ((π΅ Γ π΅) = βͺ π β (π΅ Γ π΅) = βͺ π) | |
3 | ussval.1 | . . . . . . . 8 β’ π΅ = (Baseβπ) | |
4 | 3 | fvexi 6895 | . . . . . . 7 β’ π΅ β V |
5 | 4, 4 | xpex 7733 | . . . . . 6 β’ (π΅ Γ π΅) β V |
6 | 2, 5 | eqeltrrdi 2834 | . . . . 5 β’ ((π΅ Γ π΅) = βͺ π β βͺ π β V) |
7 | uniexb 7744 | . . . . 5 β’ (π β V β βͺ π β V) | |
8 | 6, 7 | sylibr 233 | . . . 4 β’ ((π΅ Γ π΅) = βͺ π β π β V) |
9 | eqid 2724 | . . . . 5 β’ βͺ π = βͺ π | |
10 | 9 | restid 17378 | . . . 4 β’ (π β V β (π βΎt βͺ π) = π) |
11 | 8, 10 | syl 17 | . . 3 β’ ((π΅ Γ π΅) = βͺ π β (π βΎt βͺ π) = π) |
12 | 1, 11 | eqtr2d 2765 | . 2 β’ ((π΅ Γ π΅) = βͺ π β π = (π βΎt (π΅ Γ π΅))) |
13 | ussval.2 | . . 3 β’ π = (UnifSetβπ) | |
14 | 3, 13 | ussval 24086 | . 2 β’ (π βΎt (π΅ Γ π΅)) = (UnifStβπ) |
15 | 12, 14 | eqtrdi 2780 | 1 β’ ((π΅ Γ π΅) = βͺ π β π = (UnifStβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3466 βͺ cuni 4899 Γ cxp 5664 βcfv 6533 (class class class)co 7401 Basecbs 17143 UnifSetcunif 17206 βΎt crest 17365 UnifStcuss 24080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-rest 17367 df-uss 24083 |
This theorem is referenced by: tususs 24097 cnflduss 25206 |
Copyright terms: Public domain | W3C validator |