MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ussid Structured version   Visualization version   GIF version

Theorem ussid 24216
Description: In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017.)
Hypotheses
Ref Expression
ussval.1 𝐵 = (Base‘𝑊)
ussval.2 𝑈 = (UnifSet‘𝑊)
Assertion
Ref Expression
ussid ((𝐵 × 𝐵) = 𝑈𝑈 = (UnifSt‘𝑊))

Proof of Theorem ussid
StepHypRef Expression
1 oveq2 7421 . . 3 ((𝐵 × 𝐵) = 𝑈 → (𝑈t (𝐵 × 𝐵)) = (𝑈t 𝑈))
2 id 22 . . . . . 6 ((𝐵 × 𝐵) = 𝑈 → (𝐵 × 𝐵) = 𝑈)
3 ussval.1 . . . . . . . 8 𝐵 = (Base‘𝑊)
43fvexi 6900 . . . . . . 7 𝐵 ∈ V
54, 4xpex 7755 . . . . . 6 (𝐵 × 𝐵) ∈ V
62, 5eqeltrrdi 2842 . . . . 5 ((𝐵 × 𝐵) = 𝑈 𝑈 ∈ V)
7 uniexb 7766 . . . . 5 (𝑈 ∈ V ↔ 𝑈 ∈ V)
86, 7sylibr 234 . . . 4 ((𝐵 × 𝐵) = 𝑈𝑈 ∈ V)
9 eqid 2734 . . . . 5 𝑈 = 𝑈
109restid 17450 . . . 4 (𝑈 ∈ V → (𝑈t 𝑈) = 𝑈)
118, 10syl 17 . . 3 ((𝐵 × 𝐵) = 𝑈 → (𝑈t 𝑈) = 𝑈)
121, 11eqtr2d 2770 . 2 ((𝐵 × 𝐵) = 𝑈𝑈 = (𝑈t (𝐵 × 𝐵)))
13 ussval.2 . . 3 𝑈 = (UnifSet‘𝑊)
143, 13ussval 24215 . 2 (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊)
1512, 14eqtrdi 2785 1 ((𝐵 × 𝐵) = 𝑈𝑈 = (UnifSt‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463   cuni 4887   × cxp 5663  cfv 6541  (class class class)co 7413  Basecbs 17230  UnifSetcunif 17284  t crest 17437  UnifStcuss 24209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-rest 17439  df-uss 24212
This theorem is referenced by:  tususs  24225  cnflduss  25327
  Copyright terms: Public domain W3C validator