![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ussid | Structured version Visualization version GIF version |
Description: In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017.) |
Ref | Expression |
---|---|
ussval.1 | β’ π΅ = (Baseβπ) |
ussval.2 | β’ π = (UnifSetβπ) |
Ref | Expression |
---|---|
ussid | β’ ((π΅ Γ π΅) = βͺ π β π = (UnifStβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7416 | . . 3 β’ ((π΅ Γ π΅) = βͺ π β (π βΎt (π΅ Γ π΅)) = (π βΎt βͺ π)) | |
2 | id 22 | . . . . . 6 β’ ((π΅ Γ π΅) = βͺ π β (π΅ Γ π΅) = βͺ π) | |
3 | ussval.1 | . . . . . . . 8 β’ π΅ = (Baseβπ) | |
4 | 3 | fvexi 6905 | . . . . . . 7 β’ π΅ β V |
5 | 4, 4 | xpex 7739 | . . . . . 6 β’ (π΅ Γ π΅) β V |
6 | 2, 5 | eqeltrrdi 2842 | . . . . 5 β’ ((π΅ Γ π΅) = βͺ π β βͺ π β V) |
7 | uniexb 7750 | . . . . 5 β’ (π β V β βͺ π β V) | |
8 | 6, 7 | sylibr 233 | . . . 4 β’ ((π΅ Γ π΅) = βͺ π β π β V) |
9 | eqid 2732 | . . . . 5 β’ βͺ π = βͺ π | |
10 | 9 | restid 17378 | . . . 4 β’ (π β V β (π βΎt βͺ π) = π) |
11 | 8, 10 | syl 17 | . . 3 β’ ((π΅ Γ π΅) = βͺ π β (π βΎt βͺ π) = π) |
12 | 1, 11 | eqtr2d 2773 | . 2 β’ ((π΅ Γ π΅) = βͺ π β π = (π βΎt (π΅ Γ π΅))) |
13 | ussval.2 | . . 3 β’ π = (UnifSetβπ) | |
14 | 3, 13 | ussval 23763 | . 2 β’ (π βΎt (π΅ Γ π΅)) = (UnifStβπ) |
15 | 12, 14 | eqtrdi 2788 | 1 β’ ((π΅ Γ π΅) = βͺ π β π = (UnifStβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 βͺ cuni 4908 Γ cxp 5674 βcfv 6543 (class class class)co 7408 Basecbs 17143 UnifSetcunif 17206 βΎt crest 17365 UnifStcuss 23757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-rest 17367 df-uss 23760 |
This theorem is referenced by: tususs 23774 cnflduss 24872 |
Copyright terms: Public domain | W3C validator |