Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ussid | Structured version Visualization version GIF version |
Description: In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017.) |
Ref | Expression |
---|---|
ussval.1 | ⊢ 𝐵 = (Base‘𝑊) |
ussval.2 | ⊢ 𝑈 = (UnifSet‘𝑊) |
Ref | Expression |
---|---|
ussid | ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 = (UnifSt‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7283 | . . 3 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → (𝑈 ↾t (𝐵 × 𝐵)) = (𝑈 ↾t ∪ 𝑈)) | |
2 | id 22 | . . . . . 6 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → (𝐵 × 𝐵) = ∪ 𝑈) | |
3 | ussval.1 | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑊) | |
4 | 3 | fvexi 6788 | . . . . . . 7 ⊢ 𝐵 ∈ V |
5 | 4, 4 | xpex 7603 | . . . . . 6 ⊢ (𝐵 × 𝐵) ∈ V |
6 | 2, 5 | eqeltrrdi 2848 | . . . . 5 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → ∪ 𝑈 ∈ V) |
7 | uniexb 7614 | . . . . 5 ⊢ (𝑈 ∈ V ↔ ∪ 𝑈 ∈ V) | |
8 | 6, 7 | sylibr 233 | . . . 4 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 ∈ V) |
9 | eqid 2738 | . . . . 5 ⊢ ∪ 𝑈 = ∪ 𝑈 | |
10 | 9 | restid 17144 | . . . 4 ⊢ (𝑈 ∈ V → (𝑈 ↾t ∪ 𝑈) = 𝑈) |
11 | 8, 10 | syl 17 | . . 3 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → (𝑈 ↾t ∪ 𝑈) = 𝑈) |
12 | 1, 11 | eqtr2d 2779 | . 2 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 = (𝑈 ↾t (𝐵 × 𝐵))) |
13 | ussval.2 | . . 3 ⊢ 𝑈 = (UnifSet‘𝑊) | |
14 | 3, 13 | ussval 23411 | . 2 ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊) |
15 | 12, 14 | eqtrdi 2794 | 1 ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 = (UnifSt‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cuni 4839 × cxp 5587 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 UnifSetcunif 16972 ↾t crest 17131 UnifStcuss 23405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-rest 17133 df-uss 23408 |
This theorem is referenced by: tususs 23422 cnflduss 24520 |
Copyright terms: Public domain | W3C validator |